Publications by authors named "Suzana Stanisavljevic"

HYCOs are hybrid molecules consisting of activators of the transcription factor Nrf2 conjugated to carbon monoxide (CO)-releasing moieties. These "dual action" compounds have been designed to mimic the activity of heme oxygenase-1 (HO-1), a stress inducible cytoprotective enzyme that degrades heme to CO which expression is regulated by Nrf2. HYCOs have recently shown efficacy in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis.

View Article and Find Full Text PDF

In the search for novel potent immunomodulatory nuclear factor-erythroid 2 related factor 2 (Nrf2) activators, a derivative of cholic bile acid, SB140, was synthesized. The synthesis of SB140 aimed to increase the electrophilic functionality of the compound, enhancing its ability to activate Nrf2. Effects of SB140 on microglial cells, myeloid-derived cells (MDC), and T cells were explored in the context of (central nervous system) CNS autoimmunity.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are known for their immunosuppressive properties. Based on the demonstrated anti-inflammatory effect of mouse MSCs from hair follicles (moMSCORS) in a murine wound closure model, this study evaluates their potential for preventing type 1 diabetes (T1D) in C57BL/6 mice. T1D was induced in C57BL/6 mice by repeated low doses of streptozotocin.

View Article and Find Full Text PDF

We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) became a focus of intensive research due to its death toll during the Covid-19 pandemic. An uncontrolled and excessive inflammatory response mediated by proinflammatory molecules such as high mobility group box protein 1 (HMGB1), IL-6, and TNF mounts as a response to infection. In this study, ethyl pyruvate (EP), a known inhibitor of HMGB1, was tested in the model of murine ARDS induced in C57BL/6 mice by intranasal administration of polyinosinic:polycytidylic acid (poly(I:C)).

View Article and Find Full Text PDF

Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) induced in inbred rodents, i.e., genetically identical animals kept under identical environmental conditions, shows variable clinical outcomes.

View Article and Find Full Text PDF

Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity.

View Article and Find Full Text PDF

Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential.

View Article and Find Full Text PDF

Rosmarinic acid is a polyphenolic compound, abundantly present in herbs of the Lamiaceae family. The aim of the study was to evaluate the immunomodulatory properties of a recently developed phenethyl ester derivative of rosmarinic acid (PERA), with enhanced ability of diffusion through biological membranes, in an animal model of the central nervous system (CNS) autoimmunity. To this end, experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis was used.

View Article and Find Full Text PDF

Sepsis is a life-threatening condition characterized by an acute cytokine storm followed by prolonged dysfunction of the immune system in the survivors. Post-septic lymphopenia and functional deficits of the remaining immune cells lead to increased susceptibility to secondary infections and other morbid conditions causing late death in the patients. This state of post-septic immunoparalysis may also influence disorders stemming from inappropriate or overactive immune responses, such as autoimmune and immunoinflammatory diseases, including multiple sclerosis.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is classically induced with complete Freund's adjuvant (CFA). The immune response against CFA has a confounding influence on the translational capacity of EAE as a multiple sclerosis model. Here, we compare clinical, cellular and molecular properties between syngeneic spinal cord homogenate (SCH)- and SCH + CFA-immunized Dark Agouti rats.

View Article and Find Full Text PDF
Article Synopsis
  • Gut microbiota dysbiosis plays a key role in the development of multiple sclerosis and its animal model, EAE.
  • Administering antibiotics to young Dark Agouti rats significantly altered their gut microbiota diversity, decreasing certain bacterial classes while increasing others.
  • The changes in gut microbiota resulted in worsened EAE symptoms, heightened immune responses, and increased central nervous system inflammation, indicating that early antibiotic use may negatively affect immune system regulation.
View Article and Find Full Text PDF

Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens.

View Article and Find Full Text PDF

Ethyl pyruvate is a redox analogue of dimethyl fumarate (Tecfidera), a drug for multiple sclerosis treatment. We have recently shown that ethyl pyruvate ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. It affects encephalitogenic T cells and macrophages in vitro, as well as in lymph nodes draining the site of encephalitogenic immunization and within the central nervous system (CNS).

View Article and Find Full Text PDF

C57BL/6, BALB/c and NOD mice are among the most frequently used strains in autoimmunity research. NOD mice spontaneously develop type 1 diabetes (T1D) and they are prone to induction of experimental autoimmune encephalomyelitis (EAE). Both diseases can be routinely induced in C57BL/6 mice, but not in BALB/c mice.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS). It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate toward gut associated lymphoid tissues (GALTs) and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity.

View Article and Find Full Text PDF

Cucurbitacin E (CucE) is a highly oxidized steroid consisting of a tetracyclic triterpene. It is a member of a Cucurbitacin family of biomolecules that are predominantly found in Cucurbitaceae plants. CucE has already been identified as a potent anti-inflammatory compound.

View Article and Find Full Text PDF

MicroRNAs (miR) are small non-coding RNAs involved in the immune response regulation. miR-155 has been attributed a major pro-inflammatory role in the pathogenesis of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Here, a role of miR-155 in re-activation of encephalitogenic CD4(+) T cells was investigated.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) has been increasingly appreciated as an anti-inflammatory and neuroprotective agent with potent pharmacological properties relevant for treatment of various CNS disorders. Microglial cells seem to be particularly sensitive to its effects. In this study, microglial cells were exposed to EP for relatively short periods (10-120min) and inflammatory properties of the cells were determined after 24h of cultivation.

View Article and Find Full Text PDF

Dimethyl fumarate (DMF), a new drug for multiple sclerosis (MS) treatment, acts against neuroinflammation via mechanisms that are triggered by adduct formation with thiol redox switches. Ethyl pyruvate (EP), an off-the-shelf agent, appears to be a redox analog of DMF, but its immunomodulatory properties have not been put into the context of MS therapy. In this article, we examined and compared the effects of EP and DMF on MS-relevant activity/functions of T cells, macrophages, microglia, and astrocytes.

View Article and Find Full Text PDF