Skeletal muscle is an attractive target tissue for delivery of therapeutic genes, since it is well vascularized, easily accessible, and has a high capacity for protein synthesis. For efficient transfection in skeletal muscle, several protocols have been described, including delivery of low voltage electric pulses and a combination of high and low voltage electric pulses. The aim of this study was to determine the influence of different parameters of electrotransfection on short-term and long-term transfection efficiency in murine skeletal muscle, and to evaluate histological changes in the treated tissue.
View Article and Find Full Text PDFElectrically-assisted gene delivery is a non-viral gene delivery technique, using application of square wave electric pulses to facilitate uptake of plasmid DNA into the cells. Feasibility and effectiveness of this method in vivo was already demonstrated, elaborating on pulse parameters and plasmid construction. However, there were no studies performed on sequencing and timing of plasmid DNA injection into the tumors and application of electric pulses.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2005
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K.
View Article and Find Full Text PDF