Global warming is a major threat to reptiles because temperature strongly affects their development. High incubation temperatures reduce hatchling body size and physiological performance; however, its effects on brain development and learning abilities are less well understood. In particular, it remains unclear if the effects of elevated temperatures on learning are restricted to hatchlings or instead will persist later in life.
View Article and Find Full Text PDFLike the cerebralcortex, the surface of the cerebellum is repeatedly folded. Unlike the cerebralcortex, however, cerebellar folds are much thinner and more numerous; repeatthemselves largely along a single direction, forming accordion-like folds transverseto the mid-sagittal plane; and occur in all but the smallest cerebella. We haveshown previously that while the location of folds in mammalian cerebral cortex isclade-specific, the overall degree of folding strictly follows a universalpower law relating cortical thickness and the exposed and total surface areas predictedfrom the minimization of the effective free energy of an expanding, self-avoidingsurface of a certain thickness.
View Article and Find Full Text PDFJ Neurochem
May 2024
During transient brain activation cerebral blood flow (CBF) increases substantially more than cerebral metabolic rate of oxygen consumption (CMRO) resulting in blood hyperoxygenation, the basis of BOLD-fMRI contrast. Explanations for the high CBF versus CMRO slope, termed neurovascular coupling (NVC) constant, focused on maintenance of tissue oxygenation to support mitochondrial ATP production. However, paradoxically the brain has a 3-fold lower oxygen extraction fraction (OEF) than other organs with high energy requirements, like heart and muscle during exercise.
View Article and Find Full Text PDFUnderstanding the neuronal composition of the brains of dinosaurs and other fossil amniotes would offer fundamental insight into their behavioral and cognitive capabilities, but brain tissue is only rarely fossilized. However, when the bony brain case is preserved, the volume and therefore mass of the brain can be estimated with computer tomography; and if the scaling relationship between brain mass and numbers of neurons for the clade is known, that relationship can be applied to estimate the neuronal composition of the brain. Using a recently published database of numbers of neurons in the telencephalon of extant sauropsids (birds, squamates, and testudines), here I show that the neuronal scaling rules that apply to these animals can be used to infer the numbers of neurons that composed the telencephalon of dinosaur, pterosaur, and other fossil sauropsid species.
View Article and Find Full Text PDFFront Integr Neurosci
August 2022
Neuronal densities vary enormously across sites within a brain. Does the density of the capillary bed vary accompanying the presumably larger energy requirement of sites with more neurons, or with larger neurons, or is energy supply constrained by a mostly homogeneous capillary bed? Here we find evidence for the latter, with a capillary bed that represents typically between 0.7 and 1.
View Article and Find Full Text PDFWe report in a companion paper that in the mouse brain, in contrast to the 1,000-fold variation in local neuronal densities across sites, capillary density (measured both as capillary volume fraction and as density of endothelial cells) show very little variation, of the order of only fourfold. Here we confirm that finding in the rat brain and, using published rates of local blood flow and glucose use at rest, proceed to show that what small variation exists in capillary density across sites in the rat brain is strongly and linearly correlated to variations in local rates of brain metabolism at rest. Crucially, we show that such variations in local capillary density and brain metabolism are not correlated with local variations in neuronal density, which contradicts expectations that use-dependent self-organization would cause brain sites with more neurons to have higher capillary densities due to higher energetic demands.
View Article and Find Full Text PDFFront Integr Neurosci
April 2022
What defines the rate of energy use by the brain, as well as per neurons of different sizes in different structures and animals, is one fundamental aspect of neuroscience for which much has been theorized, but very little data are available. The prevalent theories and models consider that energy supply from the vascular system to different brain regions is adjusted both dynamically and in the course of development and evolution to meet the of neuronal activity. In this perspective, we offer an alternative view: that regional rates of energy use might be mostly constrained by , given the properties of the brain capillary network, the highly stable rate of oxygen delivery to the whole brain under physiological conditions, and homeostatic constraints.
View Article and Find Full Text PDFNeuroscience research is understandably focused on highly tractable and lab-friendly mice and rats, but that emphasis obfuscates the biological beauty and intellectual richness that lies in animal diversity. The benefits of venturing further into that phylogenetic diversity are nicely illustrated by a new study on the elephant brain.
View Article and Find Full Text PDFCorvids possess cognitive skills, matching those of nonhuman primates. However, how these species with their small brains achieve such feats remains elusive. Recent studies suggest that cognitive capabilities could be based on the total numbers of telencephalic neurons.
View Article and Find Full Text PDFWith rates of psychiatric illnesses such as depression continuing to rise, additional preclinical models are needed to facilitate translational neuroscience research. In the current study, the raccoon (Procyon lotor) was investigated due to its similarities with primate brains, including comparable proportional neuronal densities, cortical magnification of the forepaw area, and cortical gyrification. Specifically, we report on the cytoarchitectural characteristics of raccoons profiled as high, intermediate, or low solvers in a multiaccess problem-solving task.
View Article and Find Full Text PDFElevated temperatures during development affect a wide range of traits in ectotherms. Less well understood is the impact of global warming on brain development, which has only rarely been studied experimentally. Here, we evaluate current progress in the field and search for common response patterns among ectotherm groups.
View Article and Find Full Text PDFTo elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche.
View Article and Find Full Text PDFTo understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent.
View Article and Find Full Text PDFSmall echolocating bats are set apart from most other mammals by their relatively large cerebellum, a feature that has been associated to echolocation, as it is presumed to indicate a relatively enlarged number of neurons in the cerebellum in comparison to other brain structures. Here we quantify the neuronal composition of the cerebral cortex, cerebellum and remaining brain structures of seven species of large Pteropodid bats (formerly classified as megachiropterans), one of which echolocates, and six species of small bats (formerly classified as microchiropterans), all of which echolocate. This chiropteran data is compared to 60 mammalian species in our dataset to determine whether the relatively large cerebellum of the small echolocating bats, and possibly that of the echolocating Pteropodid, contains a relatively enlarged number of neurons.
View Article and Find Full Text PDFNeuronal number varies by several orders of magnitude across species, and has been proposed to predict cognitive capability across species. Remarkably, numbers of neurons vary across individual mice by a factor of 2 or more. We directly addressed the question of whether there is a relationship between performance in behavioral tests and the number of neurons in functionally relevant structures in the mouse brain.
View Article and Find Full Text PDFMicroglial cells play essential volume-related actions in the brain that contribute to the maturation and plasticity of neural circuits that ultimately shape behavior. Microglia can thus be expected to have similar cell sizes and even distribution both across brain structures and across species with different brain sizes. To test this hypothesis, we determined microglial cell densities (the inverse of cell size) using immunocytochemistry to Iba1 in samples of free cell nuclei prepared with the isotropic fractionator from brain structures of 33 mammalian species belonging to males and females of five different clades.
View Article and Find Full Text PDFNarratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.
View Article and Find Full Text PDFBecause the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization.
View Article and Find Full Text PDFMaximal longevity of endotherms has long been considered to increase with decreasing specific metabolic rate, and thus with increasing body mass. Using a dataset of over 700 species, here I show that maximal longevity, age at sexual maturity, and postmaturity longevity across bird and mammalian species instead correlate primarily, and universally, with the number of cortical brain neurons. Correlations with metabolic rate and body mass are entirely explained by clade-specific relationships between these variables and numbers of cortical neurons across species.
View Article and Find Full Text PDFFront Neuroanat
December 2017
Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex.
View Article and Find Full Text PDF