The state-of-the-art systems for most natural language engineering tasks employ machine learning methods. Despite the improved performances of these systems, there is a lack of established methods for assessing the quality of their predictions. This work introduces a method for explaining the predictions of any sequence-based natural language processing (NLP) task implemented with any model, neural or non-neural.
View Article and Find Full Text PDFMuch valuable information is embedded in social media posts (microposts) which are contributed by a great variety of persons about subjects that of interest to others. The automated utilization of this information is challenging due to the overwhelming quantity of posts and the distributed nature of the information related to subjects across several posts. Numerous approaches have been proposed to detect topics from collections of microposts, where the topics are represented by lists of terms such as words, phrases, or word embeddings.
View Article and Find Full Text PDFTwitter is an extremely high volume platform for user generated contributions regarding any topic. The wealth of content created at real-time in massive quantities calls for automated approaches to identify the topics of the contributions. Such topics can be utilized in numerous ways, such as public opinion mining, marketing, entertainment, and disaster management.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2014
Radiologists inspect CT scans and record their observations in reports to communicate with physicians. These reports may suffer from ambiguous language and inconsistencies resulting from subjective reporting styles, which present challenges in interpretation. Standardization efforts, such as the lexicon RadLex for radiology terms, aim to address this issue by developing standard vocabularies.
View Article and Find Full Text PDF