Implant-associated infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections.
View Article and Find Full Text PDFThe immune system kills bacteria by the formation of lytic membrane attack complexes (MACs), triggered when complement enzymes cleave C5. At present, it is not understood how the MAC perturbs the composite cell envelope of Gram-negative bacteria. Here, we show that the role of C5 convertase enzymes in MAC assembly extends beyond the cleavage of C5 into the MAC precursor C5b.
View Article and Find Full Text PDFThe complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered.
View Article and Find Full Text PDFLarvae of the blowfly Lucilia sericata facilitate wound healing by removing dead tissue and biofilms from non-healing and necrotic wounds. Another beneficial action of larvae and their excretions/secretions (ES) is down-regulation of excessive inflammation. As prolonged complement activation is key to excessive inflammation, the aim of this study was to elucidate the mechanisms underlying the anti-complement activities of ES.
View Article and Find Full Text PDFComplement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms.
View Article and Find Full Text PDFThe current emergence of antibiotic-resistant bacteria causes major problems in hospitals worldwide. To survive within the host, bacterial pathogens exploit several escape mechanisms to prevent detection and killing by the immune system. As a major player in immune defense, the complement system recognizes and destroys bacteria via different effector mechanisms.
View Article and Find Full Text PDFComplement activation plays a major role in many acute and chronic inflammatory conditions. C3d, a terminal product of complement activation, remains covalently attached to cells and is an excellent biomarker of complement-mediated inflammation. We employed a virtual high-throughput screening protocol to identify molecules with predicted binding to complement C3d and with intrinsic fluorescence properties to enable detection.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
August 2015
Objective: To investigate whether high innate activity of the classical and lectin pathways of complement is associated with multifocal motor neuropathy (MMN) and whether levels of innate complement activity or the potential of anti-GM1 antibodies to activate the complement system correlate with disease severity.
Methods: We performed a case-control study including 79 patients with MMN and 79 matched healthy controls. Muscle weakness was documented with Medical Research Council scale sum score and axonal loss with nerve conduction studies.
Direct killing of Gram-negative bacteria by serum is usually attributed to the Membrane Attack Complex (MAC) that is assembled upon activation of the complement system. In serum bactericidal assays, the activity of the MAC is usually blocked by a relatively unspecific method in which certain heat-labile complement components are inactivated at 56°C. The goal of this study was to re-evaluate MAC-driven lysis towards various Gram-negative bacteria.
View Article and Find Full Text PDFAspergillus fumigatus is an important airborne fungal pathogen and a major cause of invasive fungal infections. Susceptible individuals become infected via the inhalation of dormant conidia. If the immune system fails to clear these conidia, they will swell, germinate and grow into large hyphal structures.
View Article and Find Full Text PDFNeutrophil serine proteases (NSPs) are critical for the effective functioning of neutrophils and greatly contribute to immune protection against bacterial infections. Thanks to their broad substrate specificity, these chymotrypsin-like proteases trigger multiple reactions that are detrimental to bacterial survival such as direct bacterial killing, generation of antimicrobial peptides, inactivation of bacterial virulence factors and formation of neutrophil extracellular traps. Recently, the importance of NSPs in antibacterial defenses has been further underscored by discoveries of unique bacterial evasion strategies to combat these proteases.
View Article and Find Full Text PDFNeutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G.
View Article and Find Full Text PDFThe complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs.
View Article and Find Full Text PDFIn their recent paper in Science, Thammavongsa et al. demonstrate how Staphylococcus aureus degrades the DNA of neutrophil extracellular traps (NETs) into 2'-deoxy-adenosine, which causes incoming macrophages to go into apoptosis, thereby increasing the chance for the bacterium to survive in an abscess.
View Article and Find Full Text PDFUpon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S.
View Article and Find Full Text PDFThe plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer.
View Article and Find Full Text PDFStaphylococcus aureus is a major human pathogen causing more than a tenth of all septicemia cases and often superficial and deep infections in various tissues. One of the immune evasion strategies of S. aureus is to secrete proteins that bind to the central complement opsonin C3b.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and is characterized by chronic pulmonary infections. The mechanisms underlying chronic infection and inflammation remain incompletely understood. Mutant CFTR in nonepithelial tissues such as immune cells has been suggested to contribute to infection, inflammation, and the resultant lung disease.
View Article and Find Full Text PDFStaphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN).
View Article and Find Full Text PDFYersinia adhesin A (YadA) is a major virulence factor of Yersinia enterocolitica. YadA mediates host cell binding and autoaggregation and protects the pathogen from killing by the complement system. Previous studies demonstrated that YadA is the most important single factor mediating serum resistance of Y.
View Article and Find Full Text PDFThe complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E.
View Article and Find Full Text PDFThe CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker.
View Article and Find Full Text PDFStaphylococcus aureus is a leading human pathogen that causes a large variety of diseases. In vitro studies have shown that S. aureus secretes several small proteins that block specific elements of the host innate immune system, but their role in bacterial pathogenicity is unknown.
View Article and Find Full Text PDF