Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities.
View Article and Find Full Text PDFThe choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed.
View Article and Find Full Text PDFSubcutaneous (subQ) injection is a common route for delivering biotherapeutics, wherein pharmacokinetics is largely influenced by drug transport in a complex subQ tissue microenvironment. The selection of good drug candidates with beneficial pharmacokinetics for subQ injections is currently limited by a lack of reliable testing models. To address this limitation, we report here a cutaneous Co-lture issue-on-a-chip for njection imulation (SubCuTIS).
View Article and Find Full Text PDFVarious anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications.
View Article and Find Full Text PDFMany efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery.
View Article and Find Full Text PDF