When two intense laser beams cross at a small angle, the interference in the crossing area results in a finite intensity grating. We consider femtosecond laser filamentation in such a grating, in a situation when the process is largely confined to the grating maxima and leads to formation of a structured filament wake channel. In a dense gas, electron impact processes during the laser pulse cause a copious excitation of neutral atoms, resulting in formation of a finite grating of the density of excited atoms.
View Article and Find Full Text PDFWe demonstrate the sensitivity of the plasma composition in the filament wake channel in a dense gas to the temporal shape of the driving femtosecond laser pulse. During the pulse, the electrons released via strong-field ionization and driven by oscillating laser field are actively engaged in collisional processes with neutral neighbor atoms, including inverse Bremsstrahlung, impact ionization, and collisional excitation. By the end of the pulse, these collisional processes produce considerable numbers of additional free electrons (or ionized atoms) and excited atoms, and these contents of the filament wake channel determine its subsequent evolution dynamics.
View Article and Find Full Text PDF