Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.
View Article and Find Full Text PDFThe widespread application of lanthanoids (Lns) in manufacturing industries has raised occupational and environmental health concerns about the possible increased health risks to humans exposed to Lns in their working and living environments. Numerous studies have shown that exposures to Ln cause pulmonary injury in animals, but very little is known about the molecular mechanisms of the pulmonary inflammation caused by cerium chloride (CeCl3) exposure. In this study, we evaluated the oxidative stress and molecular mechanism underlying with the pulmonary inflammation associated with chronic lung toxicity in mice treated with nasally instilled CeCl3 for 90 consecutive days.
View Article and Find Full Text PDFBombyx mori is an important economic animal for silk production. However, it is liable to be infected by organophosphorus pesticide that can contaminate its food and growing environment. It has been known that organophosphorus pesticide including phoxim exposure may damage the digestive systems, produce oxidative stress and neurotoxicity in silkworm B.
View Article and Find Full Text PDFPhoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B.
View Article and Find Full Text PDFDue to the increased application of titanium dioxide nanoparticles (TiO2 NPs) in various areas, numerous studies have been conducted which have confirmed that exposure to TiO2 NPs may result in neurological damage in both mice and rats. However, very few studies have focused on the molecular mechanisms of spatial recognition injury. In the present study, to understand the possible neurobiological responses of the mouse hippocampus following subchronic peroral exposure to low level TiO2 NPs, mice were exposed to 2.
View Article and Find Full Text PDFImmune injuries following the exposure of titanium dioxide nanoparticles (TiO₂ NPs) have been greatly concerned along with the TiO₂ NPs are widely used in pharmacology and daily life. However, very little is known about the immunomodulatory mechanisms in the spleen-injured mice due to TiO₂ NPs exposure. In this study, mice were continuously exposed to 2.
View Article and Find Full Text PDFOrganophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. TiO2 nanoparticles have been demonstrated to increase pesticide resistance of Bombyx mori. While the toxicity of phoxim is well-documented, very limited information exists on the mechanisms of TiO2 nanoparticles improving the cocooning function of Bombyx mori following exposure to phoxim.
View Article and Find Full Text PDFExposure to lanthanoids (Ln) elicits an adverse response such as oxidative injury of lung in animals and human. The molecular targets of Ln remain unclear. In the present study, the function and signal pathway of nuclear factor erythroid 2 related factor 2 (Nrf2) in LaCl3 -induced oxidative stress in mouse lung were investigated.
View Article and Find Full Text PDFJ Agric Food Chem
September 2013
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor 2 (Nrf2), which regulates genes encoding many antioxidants and detoxifying enzymes. This study determined whether TiO₂ NPs activated the Nrf2 signaling pathway.
View Article and Find Full Text PDFEnvironmental pollution from lanthanides (Ln) has been recognized as a major problem due to a grab exploitation of Ln mine in China. Exposure to Ln has been demonstrated to cause the nephrotoxicity, very little is known about the mechanism of oxidative damage to kidney in animals. In order to understand Ln-induced nephrotoxicity, various biochemical and chemical parameters were assayed in mouse kidney.
View Article and Find Full Text PDFAlthough titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to accumulate in organs resulting in toxicity, there is currently only limited data regarding male reproductive toxicity by TiO2 NPs. In this study, testicular damage and alterations in gene expression profiles in male mice induced by intragastric administration of 2.5, 5, and 10mg/kg body weight of TiO2 NPs for 90 consecutive days were examined.
View Article and Find Full Text PDFIt has been demonstrated that the organic damages of animals can be caused by exposure to lanthanide oxides or compounds. However, the molecular mechanism of CeCl3 -induced kidney injury remains unclear. In this study, the mechanism of nephric damage in mice induced by an intragastric administration of CeCl3 was investigated.
View Article and Find Full Text PDFDue to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine whether the protein kinase MAPKs/PI3-K/Akt signaling pathways and transcription factors are activated prior to or concurrent with COX-2 up-regulation in mouse spleen following exposure to 10 mg/kg BW of pure anatase nano-TiO2 by the intragastric route for 15-90 days.
View Article and Find Full Text PDFPhoxim (O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate) is a powerful organophosphorus pesticide with high potential for Bombyx mori larvae of silkworm exposure. However, it is possible that during the phoxim metabolism, there is generation of reactive oxygen species (ROS) and phoxim may produce oxidative stress and neurotoxicity in an intoxicated silkworm. Titanium dioxide nanoparticles (TiO2 NPs) pretreatment has been demonstrated to increase antioxidant capacity and acetylcholinesterase (AChE) activity in organisms.
View Article and Find Full Text PDFCerium is widely used in many aspects of modern society, including agriculture, industry and medicine. It has been demonstrated to enter the ecological environment, is then transferred to humans through food chains, and causes toxic actions in several organs including the brain of animals. However, the neurotoxic molecular mechanisms are not clearly understood.
View Article and Find Full Text PDFRecent studies have demonstrated nanosized titanium dioxide (nano-TiO2)-induced fertility reduction and ovary injury in animals. To better understand how nano-TiO2 act in mice, female mice were exposed to 2.5, 5, and 10 mg/kg nano-TiO2 by intragastric administration for 90 consecutive days; the ovary injuries, fertility, hormone levels, and inflammation-related or follicular atresia-related cytokine expression were investigated.
View Article and Find Full Text PDFJ Biomed Mater Res A
November 2013
Nanoparticulate titanium dioxide (nano-TiO2 ) is a widely used powerful nanoparticulate material with high stability, anticorrosion, and photocatalytic property. However, it is possible that during nano-TiO2 exposure, there may be negative effects on cardiovascular system in intoxicated mice. The present study was therefore undertaken to determine nano-TiO2 -induced oxidative stress and to determine whether nano-TiO2 intoxication alters the antioxidant system in the mouse heart exposed to 2.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO2 NPs) are widely used in toothpastes, sunscreens, and products for cosmetic purpose that the human use daily. Although the neurotoxicity induced by TiO2 NPs has been demonstrated, very little is known about the molecular mechanisms underlying the brain cognition and behavioral injury. In this study, mice were exposed to 2.
View Article and Find Full Text PDFNumerous studies have demonstrated that the brain is one of the target organs in acute or chronic titanium dioxide (TiO2) nanoparticles (NPs) toxicity, and oxidative stress plays an important role in this process. However, whether brain oxidative injury responds to TiO2 NPs by activating the P38-nuclear factor-E2-related factor-2 (Nrf-2) pathway is not fully understood. The present study aimed to examine activation of the P38-Nrf-2 signaling pathway associated with oxidative stress in the mouse brain induced by intranasal administration of TiO2 NPs for 90 consecutive days.
View Article and Find Full Text PDFThe pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue.
View Article and Find Full Text PDFBackground: Numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced nephrotoxicity in animals. However, the nephrotoxic multiple molecular mechanisms are not clearly understood.
Methods: Mice were exposed to 2.
Rare earth element (REE) exposure has been shown to induce central nerve system intoxication, but the molecular mechanisms by which this occurs are poorly understood. In this study, cerium (Ce), in the form of CeCl3, was administered by way of gavage to mice for 90 consecutive days, and cytokine expression, associated with neuroinflammation of hippocampus, as well as spatial memory were increased in mice. Significant Ce accumulation in hippocampus, which led to neuroinflammation and decreased spatial memory of mice, was observed.
View Article and Find Full Text PDFNumerous studies have demonstrated lanthanide (Ln) accumulation in the liver, and the corresponding damage; however, very little work has been done to evaluate the relationship between Ln-induced liver injury and its gene expression profile in mice. In this study, liver injury and gene-expressed profiles in male mice induced by oral administration of CeCl3 (2 mg/kg) via gavage for 90 consecutive days were investigated. The results showed that cerium accumulation, liver inflammation, and hepatocyte necrosis were observed.
View Article and Find Full Text PDF