Publications by authors named "Suxia Ren"

Two-photon microscopy (TPM) has a wide range of applications in the biomedical field. Two-photon multi-focus microscopy (TPMM) greatly improves the imaging speed by combining TPM with multi-focus technology. Therefore, TPMM based on spatial light modulator (SLM) has greater advantages in generating multi-focus point (MFP) with uniform intensity and flexible position than to other schemes.

View Article and Find Full Text PDF

In this study, corncob was explored as a low-cost and abundant precursor for the preparation of activated carbon via carbonization and the KOH activation method. The alkaline/biochar ratios varied from 3:1 to 5:1, and the activation temperatures ranged from 700 to 900 °C. The characterized results reveal that the alkaline/biochar ratios and activation temperatures had a remarkable influence on the morphology and microstructure of as-prepared activated carbon (CAC).

View Article and Find Full Text PDF

Monolithic electrocatalysts are desired for the electro-Fenton oxidation system. We used a hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG) to disperse and support Fe-rich sludge and finally obtained a Fe-doped biochar (denoted as C-Sludge@TOCN/CGG) after the freeze-drying and carbonization. This C-Sludge@TOCN/CGG exhibited a porous structure with evenly-distributed Fe due to the inherently three-dimensional porous structure of TOCN/CGG hydrogel and the abundant carbon content.

View Article and Find Full Text PDF

Currently, the development of nonmetallic oxygen reduction reaction (ORR) catalysts based on heteroatomic-doped carbon materials is receiving increaseing attention in the field of fuel cells. Here, we used enzymolytic lignin (EL), melamine, and thiourea as carbon, nitrogen, and sulfur sources and NHCl as an activator to prepare N- and S-codoped lignin-based polyporous carbon (ELC) by one-step pyrolysis. The prepared lignin-derived biocarbon material (ELC-1-900) possessed a high specific surface area (844 m g), abundant mesoporous structure, and a large pore volume (0.

View Article and Find Full Text PDF

Lignin is an ideal carbon source material, and lignin-based carbon materials have been widely used in electrochemical energy storage, catalysis, and other fields. To investigate the effects of different lignin sources on the performance of electrocatalytic oxygen reduction, different lignin-based nitrogen-doped porous carbon catalysts were prepared using enzymolytic lignin (EL), alkaline lignin (AL) and dealkaline lignin (DL) as carbon sources and melamine as a nitrogen source. The surface functional groups and thermal degradation properties of the three lignin samples were characterized, and the specific surface area, pore distribution, crystal structure, defect degree, N content, and configuration of the prepared carbon-based catalysts were also analyzed.

View Article and Find Full Text PDF

In recent years, nanocellulose-based bioinorganic nanohybrids have been exploited in numerous applications due to their unique nanostructure, excellent catalytic properties, and good biocompatibility. To the best of our knowledge, this is the first report on the simple and effective synthesis of graphene/cellulose (RGO/CNC) matrix-supported platinum nanoparticles (Pt NPs) for nonenzymatic electrochemical glucose sensing. The Pt/RGO/CNC nanohybrid presented a porous network structure, in which Pt NPs, RGO, and CNCs were integrated well.

View Article and Find Full Text PDF

Fast pyrolysis of microcrystalline cellulose (MC) was carried out by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The effects of temperature, time, and a catalyst on the distribution of the pyrolysis products were analyzed. The reaction temperature and time can significantly affect the types and yields of compounds produced by cellulose pyrolysis.

View Article and Find Full Text PDF

The insulin signaling pathway plays key roles in systemic growth. TBC1D7 has recently been identified as the third subunit of the tuberous sclerosis complex (TSC), a negative regulator of cell growth. Here, we used as a model system to dissect the physiological function of TBC1D7 in vivo.

View Article and Find Full Text PDF

Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface.

View Article and Find Full Text PDF

Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat.

View Article and Find Full Text PDF

A novel route to fabricate low-cost porous carbon nanofibers (CNFs) using biomass tar, polyacrylonitrile (PAN), and silver nanoparticles has been demonstrated through electrospinning and subsequent stabilization and carbonization processes. The continuous electrospun nanofibers had average diameters ranging from 392 to 903 nm. The addition of biomass tar resulted in increased fiber diameters, reduced thermal stabilities, and slowed cyclization reactions of PAN in the as-spun nanofibers.

View Article and Find Full Text PDF

This study aimed to optimize the conditions for furfural production from rice husk via a two-stage process: acid hydrolysis followed by dehydration using an orthogonal test design and response surface methodology, respectively. Orthogonal test design was utilized in the hydrolysis step; optimum conditions were as follows: 2.5% sulfuric acid (mass fraction), 110°C reaction temperature, sulfuric acid to rice husk (L/S) ratio of 8 (g/mL), and a reaction time of 3h.

View Article and Find Full Text PDF