Publications by authors named "Suwattana Visetnan"

Carcinins are type-I crustins from crustaceans and play an important role in innate immune system. In this study, type-I crustins, carcininPm1 and carcininPm2, from the hemocytes of Penaeus monodon were identified. Comparison of their amino acid sequences and the phylogenetic tree revealed that they were closely related to the other crustacean carcinin proteins, but were clustered into different groups of the carcinin proteins.

View Article and Find Full Text PDF

Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 strains are most prevalent worldwide, other serotypes are also occasionally detected.

View Article and Find Full Text PDF

In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated.

View Article and Find Full Text PDF

The single WAP domain-containing protein (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of SWD from Litopenaeus vannamei (LvSWD) is reported herein about its activities and function against bacteria, particularly the AHPND-inducing Vibrio parahaemolyticus (VP) that causes acute hepatopancreatic necrosis disease (AHPND). The LvSWD is mainly synthesized in hemocytes and up-regulated in response to VP infection.

View Article and Find Full Text PDF

Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses.

View Article and Find Full Text PDF

In animals, infection by Gram-negative bacteria and certain viruses activates the Imd signaling pathway wherein the a NF-κB transcription factor, Relish, is a key regulatory protein for the synthesis of antimicrobial proteins. Infection by yellow head virus (YHV) activates the Imd pathway. To investigate the expression of genes involved in YHV infection and under the influence of PmRelish regulation, RNA interference and suppression subtractive hybridization (SSH) are employed.

View Article and Find Full Text PDF

Humoral innate immune response against pathogenic infection is partly responsible by the Imd pathway in which a transcription factor Relish relays the infection signals to the nuclei for the expression of antimicrobial proteins. A PmRelish gene which encoded a protein of 1195 amino acids was cloned. The PmRelish was constitutively expressed in all tissues tested and mostly up-regulated upon YHV infection.

View Article and Find Full Text PDF

A 5-domain Kazal type serine proteinase inhibitor SPIPm2 from Penaeus monodon is involved in innate immune defense against white spot syndrome virus (WSSV). To test which domains were involved, the 5 domains of SPIPm2 were over-expressed and tested against WSSV infection. By using hemocyte primary cell culture treated with each recombinant SPIPm2 domain along with WSSV, the expression of WSSV early genes ie1, WSV477 and late gene VP28 were substantially reduced as compared to other domains when the recombinant domain 2, rSPIPm2D2, was used.

View Article and Find Full Text PDF

An antimicrobial protein, crustin, is involved in the innate immunity of crustacean by defending the host directly against the microbial pathogens. By data mining the Penaeus monodon EST database, two type I crustins, carcininPm1 and 2, and ten type II crustins, crustinPm1-10, were identified. The abundant crustins were crustinPm1, 4 and 7, each with variation in the length of Gly-rich repeat among its members.

View Article and Find Full Text PDF

A five-domain Kazal-type serine proteinase inhibitor, SPIPm2, from Penaeus monodon has recently been implicated in antiviral responses for it is up-regulated upon viral infection and needs further studies. The SPIPm2 genomic gene was composed of seven exons and six introns. The genomic DNA segments coding for each Kazal domain were separated by introns of variable lengths supporting the hypothesis of gene duplication in the Kazal-type gene family.

View Article and Find Full Text PDF

Serine proteinase inhibitors (SPIs) play important roles in physiological and immunological processes involving proteinases in all multicellular organisms. In black tiger shrimp Penaeus monodon, nine different Kazal-type SPIs, namely SPIPm1-9, were identified from the cDNA libraries of hemocyte, hepatopancreas, hematopoietic tissue, ovary and lymphoid organ. They are multi-domain SPIs containing 2-7 and possibly more Kazal domains.

View Article and Find Full Text PDF