Saccharophagus degradans 2-40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium.
View Article and Find Full Text PDFSaccharophagus degradans 2-40 is a marine gamma proteobacterium that can produce polyhydroxyalkanoates from lignocellulosic biomass using a complex cellulolytic system. This bacterium has been annotated to express three surface-associated β-glucosidases (Bgl3C, Ced3A, and Ced3B), two cytoplasmic β-glucosidases (Bgl1A and Bgl1B), and unusual for an aerobic bacterium, two cytoplasmic cellobiose/cellodextrin phosphorylases (Cep94A and Cep94B). Expression of the genes for each of the above enzymes was induced when cells were transferred into a medium containing Avicel as the major carbon source except for Bgl1B.
View Article and Find Full Text PDFThe cell wall is an indispensable structure for the survival of bacteria and a target for antibiotics. Peptidoglycan is the major constituent of the cell wall, which is comprised of backbone repeats of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). A peptide stem is appended to the NAM unit, which in turn experiences cross-linking with a peptide from another peptidoglycan in the final steps of cell wall assembly.
View Article and Find Full Text PDFThe genome of Staphylococcus aureus is constantly in a state of flux, acquiring genes that enable the bacterium to maintain resistance in the face of antibiotic pressure. The acquisition of the mecA gene from an unknown origin imparted S. aureus with broad resistance to beta-lactam antibiotics, with the resultant strain designated as methicillin-resistant S.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2007
Bacterial beta-lactamases are the major causes of resistance to beta-lactam antibiotics. Three classes of these enzymes are believed to have evolved from ancestral penicillin-binding proteins (PBPs), enzymes responsible for bacterial cell wall biosynthesis. Both beta-lactamases and PBPs are able to efficiently form acyl-enzyme species with beta-lactam antibiotics.
View Article and Find Full Text PDFPenicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S.
View Article and Find Full Text PDFThe major constituent of the bacterial cell wall, peptidoglycan, is comprised of repeating units of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) with an appended peptide. Penicillin-binding proteins (PBPs) are involved in the final stages of bacterial cell wall assembly. Two activities for PBPs are the cross-linking of the cell wall, carried out by dd-transpeptidases, and the dd-peptidase activity, that removes the terminal d-Ala residue from peptidoglycan.
View Article and Find Full Text PDFPenicillin-binding proteins (PBPs) are responsible for the final stages of bacterial cell wall assembly. These enzymes are targets of beta-lactam antibiotics. Two of the PBP activities include dd-transpeptidase and DD-carboxypeptidase activities, which carry out the cross-linking of the cell wall and trimming of the peptidoglycan, the major constituent of the cell wall, by an amino acid, respectively.
View Article and Find Full Text PDFThe class C beta-lactamase from Enterobacter cloacae P99 confers resistance to a wide range of broad-spectrum beta-lactams but not to the newer cephalosporin cefepime. Using PCR mutagenesis of the E. cloacae P99 ampC gene, we obtained a Leu-293-Pro mutant of the P99 beta-lactamase conferring a higher MIC of cefepime (MIC, 8 microg/ml, compared with 0.
View Article and Find Full Text PDFAim: To investigate the spectrum of gram-negative agents causing acute and recurrent cystitis in outpatients and sensitivity of uropathogenic E. coli to antibacterial drugs; to compare drug resistance of uropathogenic E. coli isolated in Russia and other countries.
View Article and Find Full Text PDFA simple technique providing a means for rapid genetic differentiation of chlamydial strains is described. The technique is based on a single-step sequence-specific separation of PCR-amplified DNA fragments by electrophoresis in an agarose gel containing a DNA ligand - bisbenzimide-PEG. A hypervariable region at the 5' end of the omp2 gene of Chlamydiaceae species encoding the 60-kDa cysteine-rich outer membrane protein was selected as a target for PCR.
View Article and Find Full Text PDFZdravookhr Ross Fed
October 1979