When an antibody (Ab) is immobilized on its surface, a carbon nanotube (CNT) becomes a biosensor that detects the corresponding antigen (Ag) because Ag-Ab complexes formed on the CNT surface moderate the current flow through it. We synthesized a biological ink containing CNTs that are twice functionalized, first with magnetic nanoparticles and thereafter with the anti-c-Myc monoclonal Ab. The ink is pipetted and dynamically self-organized by an external magnetic field into a dense electrically conducting sensor strip that measures the decrease in current when a sample containing c-Myc Ag is deposited on it.
View Article and Find Full Text PDFUsing whole blood, we demonstrate the first realization of a novel macroscale, contactless, label-free method to print in situ three-dimensional (3D) cell assemblies of different morphologies and sizes. This novel bioprinting method does not use nozzles that can contaminate the cell suspension, or to which cells can adhere. Instead, we utilize the intrinsic diamagnetic properties of whole blood cells to magnetically manipulate them in situ in a nontoxic paramagnetic medium, creating (a) rectangular bar, (b) three-pointed star, and (c) spheroids of varying sizes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
In the context of emerging methods to control particle organization in particle-matrix composite materials, we explore, using finite element analysis, how to modulate the material bulk mechanical stiffness. Compared to a composite containing randomly distributed particles, material stiffness is enhanced 100-fold when filler particles are aligned into linear chains lying parallel to the loading direction. In contrast, chains aligned perpendicular to that direction produce negligible stiffness change.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2016
Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2016
We present a rapid and controllable method to create microscale heterogeneities in the 3D stiffness of a soft material by printing patterns with a ferrofluid ink. An ink droplet moved through a liquid polydimethylsiloxane (PDMS) volume using an externally applied magnetic field sheds clusters of magnetic nanoparticles (MNPs) in its wake. By varying the field spatiotemporally, a well-defined three-dimensional curvilinear feature is printed that contains MNP clusters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
We report the serendipitous discovery of a rapid and inexpensive method to attach nanoscale magnetic chaperones to carbon nanotubes (CNTs). Nickel nanoparticles (NiNPs) become entangled in CNTs after both are dispersed in kerosene by sonication and form conjugates. An externally applied magnetic field manipulates the resulting CNTs-NiNP ink without NiNP separation, allowing us to print an embedded circuit in an elastomeric matrix and fabricate a strain gage and an oil sensor.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) in a liquid dispersion can be organized through controlled self-assembly by applying an external magnetic field that regulates inter-particle interactions. Thus, micro- and nanostructures of desired morphology and superlattice geometry that show emergent magnetic properties can be fabricated. We describe how superferromagnetism, which is a specific type of emergence, can be produced.
View Article and Find Full Text PDFWe report a novel method to pattern the stiffness of an elastomeric nanocomposite by selectively impeding the cross-linking reactions at desired locations while curing. This is accomplished by using a magnetic field to enforce a desired concentration distribution of colloidal magnetite nanoparticles (MNPs) in the liquid precursor of polydimethysiloxane (PDMS) elastomer. MNPs impede the cross-linking of PDMS; when they are dispersed in liquid PDMS, the cured elastomer exhibits lower stiffness in portions containing a higher nanoparticle concentration.
View Article and Find Full Text PDFA method to produce and pattern magnetic microstructure in a soft-polymer matrix is demonstrated. An externally applied magnetic field is used to influence the dynamics of magnetophoretic transport and dipolar self-assembly of magnetic nanoparticle clusters in the liquid precursor of poly-dimethylsiloxane (PDMS). Magnetic nanoparticles agglomerate by an interplay of van der Waals forces and dipolar interactions to form anisotropic clusters.
View Article and Find Full Text PDF