Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand.
View Article and Find Full Text PDFEnviron Geochem Health
February 2024
The jarosite waste used during this study consists of minute amount of arsenic that has a potential to be leached into environment when kept in open area. This study tried to recover arsenic from jarosite waste using hydrometallurgical treatment. The comprehensive characterization of jarosite samples was performed using various analytical techniques, including X-ray diffraction (XRD), Fourier transform Infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), and it was characterized as natrojarosite.
View Article and Find Full Text PDFCurrently, around 400 million tonnes of synthetic polymers are being dumped as waste annually and by this rate by 2050 the ocean would contain more such waste compared to the total weight of fish. As recycling could solve part of this problem, recently such waste is being reused for various purposes like composite preparation, oil production and various other use such as production of foams, sponges, and aerogels. However, there is a relatively limited literature available on the utilization of polyethylene polymer (like LDPE).
View Article and Find Full Text PDFThe COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally.
View Article and Find Full Text PDFJarosite is a residue that is generated as a by-product during zinc extraction, and it consists of various types of heavy metal (loid)s such as arsenic, cadmium, chromium, iron, lead, mercury and silver. Due to the huge jarosite turn-over rate, and less efficient and expensive residual metal extraction processes, the zinc-producing industries dispose this waste in landfills. However, the leachate generated from such landfills contains a high concentration of heavy metal (loid)s that could contaminate the nearby water resources and cause environmental concern and human health risk.
View Article and Find Full Text PDFBackground: Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in conditions.
View Article and Find Full Text PDFEmerging contaminants (ECs) are not completely removed by wastewater treatment owing to their capabilities of making complexes, toxic derivatives, byproduct formation, and dynamic partitioning. Negative contaminant removal i.e.
View Article and Find Full Text PDFCurr Opin Environ Sci Health
June 2022
Corona virus disease (COVID-19) pandemic had taken the humankind by surprise, yet the world laid out a historical battle against all the odds. Laboratory findings have never been so rapidly made available to common public and authorities. Experimental data on COVID-19 from across the globe was directly made accessible worldwide.
View Article and Find Full Text PDFBiohydrogen (BioH) is considered as one of the most environmentally friendly fuels and a strong candidate to meet the future demand for a sustainable source of energy. Presently, the production of BioH from photosynthetic organisms has raised a lot of hopes in the fuel industry. Moreover, microalgal-based BioH synthesis not only helps to combat current global warming by capturing greenhouse gases but also plays a key role in wastewater treatment.
View Article and Find Full Text PDFSince the last few decades, the green synthesis of metal nanoparticles was one of the most thrust areas due to its widespread application. The study proposed using wasted and unusable Humulus lupulus (Hops) extract to synthesize silver nanoparticles for biomedical application. The environment around us gives us many scopes to use the waste from environmental sources and turn it into something valuable.
View Article and Find Full Text PDFWastewater is always composed of different pollutants, most of which are toxic to the living being. It is very tough to separate all those diverse groups of contaminants using a single process or single material. Rather a sustainable and environment friendly processes should be adapted to restrict the secondary pollution generation.
View Article and Find Full Text PDFFluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter.
View Article and Find Full Text PDFA bio-catalyzed process has been developed for treating jute fibers to enhance their tensile strength and resistance against biodegradation. Lipolytic bacteria were used in the process to transesterify jute fibers by replacing hydrophilic hydroxyl groups within cellulose chains with hydrophobic fatty acyl chains. Transesterification of some of the hydroxyl groups within the fiber was confirmed with FTIR, UV-vis spectroscopy, (13)C solid state NMR, gas chromatography and analytical determination of ester content.
View Article and Find Full Text PDFThe physico-chemical properties of jute fibers treated with alkali (NaOH) solution have been investigated in this study. The treatments were applied under ambient and elevated temperatures and high pressure steaming conditions. To the knowledge of these authors the influence of alkali-steam treatment on the uniaxial tensile strength of natural ligno-cellulosic fibers, such as jute, has not been investigated earlier.
View Article and Find Full Text PDF