Publications by authors named "Suvendra K Ray"

Antisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNA[NH], 2',4'-BNA[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'--3'/3'-GAAUCGUGACCGGA-5').

View Article and Find Full Text PDF

Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature.

View Article and Find Full Text PDF

The transcriptional regulator PehR regulates the synthesis of the extracellular plant cell wall-degrading enzyme polygalacturonase, which is essential in the bacterial wilt of plants caused by one of the most devastating plant phytopathogens, . The bacterium has a wide global distribution infecting many different plant species, resulting in massive agricultural and economic losses. Because the PehR molecular structure has not yet been determined and the structural consequences of PehR on ligand binding have not been thoroughly investigated, we have used an approach combined with experiments for the first time to characterize the PehR regulator from a local isolate (Tezpur, Assam, India) of the phytopathogenic bacterium F1C1.

View Article and Find Full Text PDF

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R.

View Article and Find Full Text PDF

Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties.

View Article and Find Full Text PDF

For enumerating viable bacteria, traditional dilution plating to count colony forming units (CFUs) has always been the preferred method in microbiology owing to its simplicity, albeit being laborious and time-consuming. Similar CFU counts can be obtained by quantifying growing micro-colonies in conjunction with the benefits of a microscope. Here, we employed a simple method of five to ten microliter spotting of a diluted bacterial culture multiple times on a single Petri dish followed by determining CFU by counting micro-colonies using a phase-contrast microscope.

View Article and Find Full Text PDF

Unequal usage of synonymous codons is known as codon usage bias (CUB), which is generally different between the high-expression genes (HEG) and low-expression genes (LEG) in organisms is not yet adequately reported across different bacteria. In this study, a machine learning-based approach was implemented initially to find out codons that are significantly different between the HEG and LEG in Escherichia coli. It identified Cys codons such as UGU and UGC, Lys codons such as AAA and AAG that were least influenced by gene expression.

View Article and Find Full Text PDF

A common approach to estimate the strength and direction of selection acting on protein coding sequences is to calculate the dN/dS ratio. The method to calculate dN/dS has been widely used by many researchers and many critical reviews have been made on its application after the proposition by Nei and Gojobori in 1986. However, the method is still evolving considering the non-uniform substitution rates and pretermination codons.

View Article and Find Full Text PDF

The paper and pulp industry (PPI) is one of the largest industries that contribute to the growing economy of the world. While wood remains the primary raw material of the PPIs, the demand for paper has also grown alongside the expanding global population, leading to deforestation and ecological imbalance. Wood-based paper production is associated with enormous utilization of water resources and the release of different wastes and untreated sludge that degrades the quality of the environment and makes it unsafe for living creatures.

View Article and Find Full Text PDF

Transversion and transition mutations have variable effects on the stability of RNA secondary structure considering that the former destabilizes the double helix geometry to a greater extent by introducing purine:purine (R:R) or pyrimidine:pyrimidine (Y:Y) base pairs. Therefore, transversion frequency is likely to be lower than that of transition in the secondary structure regions of RNA genes. Here, we performed an analysis of transition and transversion frequencies in tRNA genes defined well with secondary structure and compared with the intergenic regions in five bacterial species namely Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Streptococcus pneumoniae using a large genome sequence data set.

View Article and Find Full Text PDF

All approved coronavirus disease 2019 (COVID-19) vaccines in current use are safe, effective, and reduce the risk of severe illness. Although data on the immunological presentation of patients with COVID-19 is limited, increasing experimental evidence supports the significant contribution of B and T cells towards the resolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite the availability of several COVID-19 vaccines with high efficacy, more effective vaccines are still needed to protect against the new variants of SARS-CoV-2.

View Article and Find Full Text PDF

In the present study, five novel LNA based antisense modifications have been proposed. A conformational search was carried out using TANGO, followed by geometry optimization using MOPAC. Based on their electronic energies the most stable conformation for each modification was identified.

View Article and Find Full Text PDF

In , a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase () and phosphogluconate dehydrogenase () enzymes that are relevant for glycolysis and OxPPP, respectively.

View Article and Find Full Text PDF

(F1C1) is a Gram-negative plant pathogenic bacterium that causes lethal wilt disease in a wide range of plant species. This pathogen is very well known for its unpredictable behavior during infection and wilting its host. Because of its mysterious infection behavior, virulence and pathogenicity standardization are still a big challenge in the case of .

View Article and Find Full Text PDF

Mycobacterial pathogens have evolved a unique secretory apparatus called the Type VII secretion system (T7SS) which comprises of five gene clusters designated as ESX1, ESX2, ESX3, ESX4, and ESX5. Of these the ESX3 T7SS plays an important role in the regulatory uptake of iron from the environment, thereby enabling the bacteria to establish successful infection in the host. However, ESX3 secretion system is conserved among all the mycobacterial species including the fast-growing nonpathogenic species M.

View Article and Find Full Text PDF

Effective number of codons (N^c) and its variant N^'c (effective number of codons prime) are the two widely used methods for measuring unequal usage of synonymous codons in coding sequences, known as the codon usage bias (CUB). The mathematical formula used in calculating N^c and N^'c values is giving inappropriate measures of CUB in case of low abundance of amino acids. In addition, the magnitude of error also varies according to codon degeneracy.

View Article and Find Full Text PDF

Ralstonia solanacearum is an important phyto-pathogenic bacterium. The bacterium exhibits type IV pili meditated twitching motility that has been implicated in the process of natural transformation in it. A comA gene homolog, alike in several other naturally competent bacteria, has been already reported in this bacterium.

View Article and Find Full Text PDF

The present study was undertaken to investigate the pattern of optimal codon usage in Archaea. Comparative analysis was executed to understand the pattern of codon usage bias between the high expression genes (HEG) and the whole genomes in two Archaeal phyla, Crenarchaea and Euryarchaea. The G+C% of the HEG was found to be less in comparison to the genome G+C% in Crenarchaea, whereas reverse was the case in Euryarchaea.

View Article and Find Full Text PDF

The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values.

View Article and Find Full Text PDF

The plant pathogen Ralstonia solanacearum has two genes encoding for the sigma factor σ(54): rpoN1, located in the chromosome and rpoN2, located in a distinct "megaplasmid" replicon. In this study, individual mutants as well as a double mutant of rpoN were created in R. solanacearum strain GMI1000 in order to determine the extent of functional overlap between these two genes.

View Article and Find Full Text PDF

It has been reported earlier that the relative di-nucleotide frequency (RDF) in different parts of a genome is similar while the frequency is variable among different genomes. So RDF is termed as genome signature in bacteria. It is not known if the constancy in RDF is governed by genome wide mutational bias or by selection.

View Article and Find Full Text PDF

The fourfold degenerate site (FDS) in coding sequences is important for studying the effect of any selection pressure on codon usage bias (CUB) because nucleotide substitution per se is not under any such pressure at the site due to the unaltered amino acid sequence in a protein. We estimated the frequency variation of nucleotides at the FDS across the eight family boxes (FBs) defined as Um(g), the unevenness measure of a gene g. The study was made in 545 species of bacteria.

View Article and Find Full Text PDF

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Upon clip inoculation of rice leaves, Xoo causes typical V-shaped lesions whose leading edge moves through the mid-veinal region.

View Article and Find Full Text PDF

It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number.

View Article and Find Full Text PDF