Oxygen stable isotopes in uranium oxides processed through the nuclear fuel cycle may have the potential to provide information about a material's origin and processing history. However, a more thorough understanding of the fractionating processes governing the formation of signatures in real-world samples is still needed. In this study, laboratory synthesis of uranium oxides modeled after industrial nuclear fuel fabrication was performed to follow the isotope fractionation during thermal decomposition and reduction of ammonium diuranate (ADU).
View Article and Find Full Text PDF