Reproductive efficiency is crucial for animal agriculture. This economically important aspect can be influenced by environmental burdens, nutritional imbalance, and gonadal or gametic malformations of genetic origin. Successful implementation of genomic-driven selective breeding in cattle depends on the reproductive performance of artificial insemination (AI) sires with valuable genomic production traits.
View Article and Find Full Text PDFCell Tissue Res
September 2024
This article commemorates the 100th anniversary of the first issue of Cell & Tissue Research (CTR), the longest-running active journal dedicated to cell biology. Reflecting the significant contributions of spermatology and embryology to the early days of cell biology, the majority of articles in CTR's inaugural issue centered on plant and animal sperm cells. A brief synopsis of these articles provides a launching point for revisiting 100 years of research on the male germ cells and fertility in humans and animals and offers a perspective on the current state and future directions of the andrology field.
View Article and Find Full Text PDFCapacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades.
View Article and Find Full Text PDFDNA damage poses a significant challenge to all eukaryotic cells, leading to mutagenesis, genome instability and senescence. In somatic cells, the failure to repair damaged DNA can lead to cancer development, whereas, in oocytes, it can lead to ovarian dysfunction and infertility. The response of the cell to DNA damage entails a series of sequential and orchestrated events including sensing the DNA damage, activating DNA damage checkpoint, chromatin-related conformational changes, activating the DNA damage repair machinery and/or initiating the apoptotic cascade.
View Article and Find Full Text PDFConventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system.
View Article and Find Full Text PDFThere is a current need for new biomarkers of spermatozoa quality, that consistently and correctly identify spermatozoa that will successfully contribute to subsequent embryo development. This could improve the standardization of semen analysis, decrease early embryo mortality, and use these biomarkers as a selection tool before servicing females. This study utilized imaging techniques to identify potential biomarkers of sperm quality, using sires previously classified as high ( = 4) or low ( = 4) performing at producing blastocysts Spermatozoa were assessed before and following a gradient purification protocol, to understand how populations of cells are impacted by such protocols and may differ between and use.
View Article and Find Full Text PDFIn Brief: The localization and abundance of the sperm BSP proteins correlate with in vitro fertility in domestic bulls used in artificial insemination service.
Abstract: Binder of sperm (BSP) proteins, secreted mainly by the accessory sex glands, are the major protein family present in bovine seminal plasma and on the sperm surface after ejaculation. In vivo, BSP proteins facilitate sperm capacitation and sperm reservoir formation; however, their impact on sperm function within the in vitro systems is less clear.
Theriogenology
December 2023
Despite being the most important form of biotechnology in animal reproduction, artificial insemination was used in about 23% of Brazilian bovine herds in 2021. This is due to the variability of results caused by varying bull fertility and body condition of the cows. This study aimed to correlate the fertility indices of bulls with qualitative attributes of the semen.
View Article and Find Full Text PDFThe degradation of sperm-borne mitochondria after fertilization is a conserved event. This process known as post-fertilization sperm mitophagy, ensures exclusively maternal inheritance of the mitochondria-harbored mitochondrial DNA genome. This mitochondrial degradation is in part carried out by the ubiquitin-proteasome system.
View Article and Find Full Text PDFFew studies describe the sequence of morphological events that characterize spermiogenesis in birds. In this paper, the clearly observable steps of spermiogenesis are described and illustrated for the first time in a commercially important ratite, the ostrich, based on light microscopy of toluidine blue-stained plastic sections. Findings were supplemented and supported by ultrastructural observations, PNA labeling of acrosome development, and immunocytochemical labeling of isolated spermatogenic cells.
View Article and Find Full Text PDFSperm capacitation is a complex process endowing biological and biochemical changes to a spermatozoon for a successful encounter with an oocyte. The present study focused on the role of the ubiquitin-proteasome system (UPS) in the remodeling of the sperm surface subproteome. The sperm surface subproteome from non-capacitated and in vitro capacitated (IVC) porcine spermatozoa, with and without proteasomal inhibition, was selectively isolated.
View Article and Find Full Text PDFA series of biochemical and biophysical changes during sperm capacitation initiates various signaling pathways related to protein phosphorylation leading to sperm hyperactivation, simultaneously with the regulation of proteasomal activity responsible for protein degradation and turnover. Our study aimed to unveil the role of the proteasome in the regulation of boar sperm motility, hyperactivated status, tyrosine phosphorylation, and total protein ubiquitination. The proteolytic activity of the 20S proteasomal core was inhibited by MG-132 in concentrations of 10, 25, 50, and 100 μM; and monitored parameters were analyzed every hour during 3 h of capacitation (IVC).
View Article and Find Full Text PDFPreferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal male gonad tissues and a variety of tumors. PRAME proteins are present in the acrosome and sperm tail, but their role in sperm function is unknown. The objective of this study was to examine the function of the bovine Y-linked PRAME (PRAMEY) during spermatozoal capacitation, the acrosome reaction (AR), and fertilization.
View Article and Find Full Text PDFMesenchymal-epithelial transition (MET) is a mechanism of endometrial epithelial regeneration. It is also implicated in adenocarcinoma and endometriosis. Little is known about this process in normal uterine physiology.
View Article and Find Full Text PDFHuntington's Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA.
View Article and Find Full Text PDFSperm capacitation is a post-testicular maturation step endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. Recently discovered mammalian sperm zinc signatures and their changes during sperm in vitro capacitation (IVC) warranted a more in-depth study of zinc interacting proteins (further zincoproteins). Here, we identified 1752 zincoproteins, with 102 changing significantly in abundance (P < 0.
View Article and Find Full Text PDFStructural and regulatory requirements of mammalian spermatozoa in both development and function make them extremely unique cells. Looking at the complexity of spermatozoon structure and its requirements for both motility and quick breakdown within the post-fertilization environment, as well as its functional needs as an extremely streamlined cell with high energy requirements, demonstrate the high importance of oxidative-reductive processes. The oxidative state of the testis and epididymis during sperm development and maturation highly influences sperm structure, with a high dependence on disulfide bond formation, facilitated by thiol mediated processes.
View Article and Find Full Text PDFCryopreservation and storage of semen for artificial insemination (AI) result in excessive accumulation of reactive oxygen species (ROS). This leads to a shortened life span and reduced motility of spermatozoa post-thawing, with consequent impairment of their function. However, certain levels of ROS are essential to facilitate the capacitation of spermatozoa required for successful fertilisation.
View Article and Find Full Text PDFThis study is part of a concerted effort to identify and phenotype rare, deleterious mutations that adversely affect sperm quality, or convey high developmental and fertility potential to embryos and ensuing progeny. A rare, homozygous mutation in ( ), which encodes a microtubule-associated protein with high expression in testis and brain was identified in an Angus bull used extensively in artificial insemination (AI) for its outstanding progeny production traits. The bull's fertility was low in cross-breeding timed AI (TAI) (Pregnancy/TAI = 25.
View Article and Find Full Text PDFThe objective of this study was to determine the extent that myoglobin and beef color are associated with calpain-1 relative abundance relative and tenderness. Longissimus lumborum (LL) samples from the left side of Holstein beef carcasses (n = 31) were collected immediately post-evisceration for 0 h analyses. At 48 h postmortem six steaks were removed from the right side of each carcass for analyses at 48 and 336 h postmortem.
View Article and Find Full Text PDFFertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility.
View Article and Find Full Text PDFSyst Biol Reprod Med
June 2022
Artificial insemination of livestock has been a staple technology for producers worldwide for over sixty years. This reproductive technology has allowed for the rapid improvement of livestock genetics, most notably in dairy cattle and pigs. This field has experienced continuous improvements over the last six decades.
View Article and Find Full Text PDFLow fertility is the single most important factor limiting livestock reproductive performance, adversely affecting the cattle industry and causing millions of dollars of economic loss. In the livestock industry, male fertility is of crucial importance for the reproductive performance of livestock. However, there is a lack of reliable biomarkers to predict bull fertility in artificial insemination service.
View Article and Find Full Text PDF