Publications by authors named "Sutor T"

Two persons with chronic motor complete spinal cord injury (SCI) were implanted with percutaneous spinal cord epidural stimulation (SCES) leads to enable motor control below the injury level (NCT04782947). Through a period of temporary followed by permanent SCES implantation, spinal mapping was conducted primarily to optimize configurations enabling volitional control of movement and training of standing and stepping as a secondary outcome. In both participants, SCES enabled voluntary increased muscle activation and movement below the injury and decreased assistance during exoskeleton-assisted walking.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a debilitating condition that can significantly affect an individual's life, causing paralysis, autonomic dysreflexia, and chronic pain. Transspinal stimulation (TSS) is a non-invasive form of neuromodulation that activates the underlying neural circuitries of the spinal cord. Application of TSS can be performed through multiple stimulation protocols, which may vary in the electrodes' size or position as well as stimulation parameters, and which may influence the response of motor functions to the stimulation.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g.

View Article and Find Full Text PDF

(1) Background: Resource intensive imaging tools have been employed to examine muscle and bone qualities after spinal cord injury (SCI). We tested the hypothesis that surface neuromuscular electrical stimulation (NMES) amplitude can be used to examine knee extensor muscle quality, distal femur and proximal tibia bone mineral density (BMD) in persons with SCI. (2) Methods: Seventeen persons (2 women) with chronic SCI participated in three weeks of NMES-resistance training twice weekly of 4 sets of 10 repetitions.

View Article and Find Full Text PDF

Study Design: Observational, analytical cohort study.

Objectives: After incomplete spinal cord injury (iSCI), propriospinal pathways may remain intact enabling coupling between respiration and locomotion. This locomotor-respiratory coupling (LRC) may enable coordination between these two important behaviors and have implications for rehabilitation after iSCI.

View Article and Find Full Text PDF

After spinal cord injury (SCI) physical activity levels decrease drastically, leading to numerous secondary health complications. Exoskeleton-assisted walking (EAW) may be one way to improve physical activity for adults with SCI and potentially alleviate secondary health complications. The effects of EAW may be limited, however, since exoskeletons induce passive movement for users who cannot volitionally contribute to walking.

View Article and Find Full Text PDF

A male with C7 complete tetraplegia participated in 14 weeks of body weight supported treadmill training (BWSTT) combined with spinal cord epidural stimulation (SCES), 4 weeks of no intervention, and two more weeks of BWSTT + SCES. The participant presented with unstable resting seated blood pressure (BP; 131/66 mmHg). After retrospective analysis, resting systolic BP decreased and diastolic BP increased, yielding a safe mean arterial BP.

View Article and Find Full Text PDF

Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.

View Article and Find Full Text PDF

Bone density decreases rapidly after spinal cord injury (SCI), increasing fracture risk. The most common fracture sites are at the knee (i.e.

View Article and Find Full Text PDF

This review of literature provides the latest evidence involving invasive and non-invasive uses of electrical stimulation therapies that assist in restoring functional abilities and the enhancement of quality of life in those with spinal cord injuries. The review includes neuromuscular electrical stimulation and functional electrical stimulation activities that promote improved body composition changes and increased muscular strength, which have been shown to improve abilities in activities of daily living. Recommendations for optimizing electrical stimulation parameters are also reported.

View Article and Find Full Text PDF

The purpose of this article is to highlight the importance of considering sleep-disordered breathing (SDB) as a potential confounder to rehabilitation research interventions in spinal cord injury (SCI). SDB is highly prevalent in SCI, with increased prevalence in individuals with higher and more severe lesions, and the criterion standard treatment with continuous positive airway pressure remains problematic. Despite its high prevalence, SDB is often untested and untreated in individuals with SCI.

View Article and Find Full Text PDF

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T laminectomy (SHAM) or laminectomy with severe contusion SCI ( = 20/group).

View Article and Find Full Text PDF

After spinal cord injury (SCI) respiratory complications are a leading cause of morbidity and mortality. Acute intermittent hypoxia (AIH) triggers spinal respiratory motor plasticity in rodent models, and repetitive AIH may have the potential to restore breathing capacity in those with SCI. As an initial approach to provide proof of principle for such effects, we tested single-session AIH effects on breathing function in adults with chronic SCI.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH) is a strategy to improve motor output in humans with neuromotor impairment. A single AIH session increases the amplitude of motor evoked potentials (MEP) in a finger muscle (first dorsal interosseous), demonstrating enhanced corticospinal neurotransmission. Since AIH elicits phrenic/diaphragm long-term facilitation (LTF) in rodent models, we tested the hypothesis that AIH augments diaphragm MEPs in humans.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH) and task-specific training (TST) synergistically improve motor function after spinal cord injury; however, mechanisms underlying this synergistic relation are unknown. We propose a hypothetical working model of neural network and cellular elements to explain AIH-TST synergy. Our goal is to forecast experiments necessary to advance our understanding and optimize the neurotherapeutic potential of AIH-TST.

View Article and Find Full Text PDF

Spinal interneurons which discharge in phase with the respiratory cycle have been repeatedly described over the last 50 years. These spinal respiratory interneurons are part of a complex propriospinal network that is synaptically coupled with respiratory motoneurons. This article summarizes current knowledge regarding spinal respiratory interneurons and emphasizes chemical, electrical and physiological methods for activating spinal respiratory neural circuits.

View Article and Find Full Text PDF

Background: Description of ultrasound guided port placement in the subclavian vein in ENT and discussion of clinical advantages and disadvantages.

Materials And Methods: 50 Patients underwent ultrasound guided port placement. The catheter tip was placed over subclavian vein or jugular vein between the superior vena cava and the right atrium.

View Article and Find Full Text PDF