Publications by authors named "Sutko J"

In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution.

View Article and Find Full Text PDF

In previous studies, we have demonstrated that the interaction of ryanoids with the sarcoplasmic reticulum Ca(2+)-release channel [ryanodine receptor (RyR)] incorporated into planar lipid bilayers reduced the effectiveness of tetraethylammonium (TEA(+)) as a blocker of K(+) translocation (J Gen Physiol 117: 385-393, 2001). In the current study, we investigated both the effect of TEA(+) on [(3)H]ryanodine binding and the actions of this impermeant cation on the interaction of the reversible ryanoid 21-amino-9alpha-hydroxyryanodine with individual, voltage-clamped RyR channels. A dose-dependent inhibition of [(3)H]ryanodine binding was observed in the presence of TEA(+), suggesting that the cation and alkaloid compete for access to a common site of interaction.

View Article and Find Full Text PDF

We have investigated the influence of transmembrane holding potential on the kinetics of interaction of a cationic ryanoid, 8beta-amino-9alpha-hydroxyryanodine, with individual ryanodine receptor (RyR) channels and on the functional consequences of this interaction. In agreement with previous studies involving cationic, neutral, and anionic ryanoids, both rates of association and dissociation of the ligand are sensitive to transmembrane potential. A voltage-sensitive equilibrium between high- and low-affinity forms of the receptor underlies alterations in rates of association and dissociation of the ryanoid.

View Article and Find Full Text PDF

Background: We have investigated the usefulness of a model of cardiac development in a large mammal, sheep, for studies of engraftment of human stem cells in the heart.

Methods And Results: Adult and fetal human mesenchymal stem cells were injected intraperitoneally into sheep fetuses in utero. Hearts at late fetal development were analyzed for engraftment of human cells.

View Article and Find Full Text PDF

Diffusion of cardiac ryanodine receptors (RyR2) in lipid bilayers was characterized. RyR2 location was monitored by imaging fluo-3 fluorescence due to Ca2+ flux through RyR2 channels or fluorescence from RyR2 conjugated with Alexa 488 or containing green fluorescent protein. Single channel currents were recorded to ensure that functional channels were studied.

View Article and Find Full Text PDF

In this and an accompanying report we describe two steps, single-channel imaging and channel immobilization, necessary for using optical imaging to analyze the function of ryanodine receptor (RyR) channels reconstituted in lipid bilayers. An optical bilayer system capable of laser scanning confocal imaging of fluo-3 fluorescence due to Ca2+ flux through single RyR2 channels and simultaneous recording of single channel currents was developed. A voltage command protocol was devised in which the amplitude, time course, shape, and hence the quantity of Ca2+ flux through a single RyR2 channel is controlled solely by the voltage imposed across the bilayer.

View Article and Find Full Text PDF

We have investigated the interactions of a novel anionic ryanoid, 10-O-succinoylryanodol, with individual mammalian cardiac muscle ryanodine receptor channels under voltage clamp conditions. As is the case for all ryanoids so far examined, the interaction of 10-O-succinoylryanodol with an individual RyR channel produces profound alterations in both channel gating and rates of ion translocation. In the continued presence of the ryanoid the channel fluctuates between periods of normal and modified gating, indicating a reversible interaction of the ligand with its receptor.

View Article and Find Full Text PDF

The interaction of ryanodine with the ryanodine receptor (RyR) produces profound changes in channel function. Open probability increases dramatically and conductance is reduced. In this report we describe differences in the properties of reduced conductance states produced by the interaction of ryanodine derivatives with RyR channels.

View Article and Find Full Text PDF

The interaction of ryanodine and derivatives of ryanodine with the high affinity binding site on the ryanodine receptor (RyR) channel brings about a characteristic modification of channel function. In all cases, channel open probability increases dramatically and single-channel current amplitude is reduced. The amplitude of the ryanoid-modified conductance state is determined by structural features of the ligand.

View Article and Find Full Text PDF

In an earlier investigation, we demonstrated that the likelihood of interaction of a positively charged ryanoid, 21-amino-9alpha-hydroxyryanodine, with the sarcoplasmic reticulum Ca(2+)-release channel (ryanodine receptor, RyR) is dependent on holding potential (Tanna, B., W. Welch, L.

View Article and Find Full Text PDF

The methylxanthine, caffeine, quenches the fluorescence of the ratiometric Ca2+ indicator indo-1, but does not affect the ratio (R) of indo-1 fluorescence at 400 and 500 nm in the presence of caffeine concentrations up to 10 mM [1]. We have found that when caffeine is at concentrations of 20 mM or greater in vitro, or in saponinpermeabilized skeletal muscle fibers, a Ca(2+)-independent increase in R occurs, which leads to an overestimation of the free Ca2+ concentration. Depending on experimental conditions, two factors contribute to the alteration in R in vitro.

View Article and Find Full Text PDF

The binding of ryanodine to a high affinity site on the sarcoplasmic reticulum Ca2+-release channel results in a dramatic alteration in both gating and ion handling; the channel enters a high open probability, reduced-conductance state. Once bound, ryanodine does not dissociate from its site within the time frame of a single channel experiment. In this report, we describe the interactions of a synthetic ryanoid, 21-amino-9alpha-hydroxy-ryanodine, with the high affinity ryanodine binding site on the sheep cardiac sarcoplasmic reticulum Ca2+-release channel.

View Article and Find Full Text PDF

The distribution of ryanodine receptor (RyR) isoforms was examined using isoform-specific monoclonal antibodies in the developing chicken brain, from E18 through adulthood, using light and electron microscopic immunocytochemistry. Monoclonal antibody 110F is specific for the alpha-skeletal muscle form of RyR, while monoclonal antibody 110E recognizes both the beta-skeletal muscle and cardiac isoforms, but does not distinguish between the two. Significant differences in the distribution of the alpha- and beta/cardiac forms were observed.

View Article and Find Full Text PDF

Comparative molecular field analysis (CoMFA) was used to analyze the relationship between the structure of a group of ryanoids and the modulation of the calcium channel function of the ryanodine receptor. The conductance properties of ryanodine receptors purified from sheep heart were measured using the planar, lipid bilayer technique. The magnitude of the ryanoid-induced fractional conductance was strongly correlated to specific structural loci on the ligand.

View Article and Find Full Text PDF

The goal of this review has been to describe the current state of the pharmacology of ryanodine and related compounds relative to the vertebrate RyRs. Resolution of questions concerning the molecular properties of RyR channel function and the contributions made by the RyR isoforms to cellular signaling in a variety of tissues will require the production of new pharmacological agents directed against these proteins. Novel naturally occurring ryanodine congeners have been identified, and significant advances have been made in developing chemical approaches that permit the structure of ryanodine to be derivatized in selective ways.

View Article and Find Full Text PDF

Complexities in calcium signaling in eukaryotic cells require diversity in the proteins involved in generating these signals. In this review, we consider the ryanodine receptor (RyR) family of intracellular calcium release channels. This includes species, tissue, and cellular distributions of the RyRs and mechanisms of activation, deactivation, and inactivation of RyR calcium release events.

View Article and Find Full Text PDF

Ryanodine, a natural product, is a complex modulator of a class of intracellular Ca2+ release channels commonly called the ryanodine receptors. Ryanodine analogs can cause the channel to persist in long-lived, subconductance states or, at high ligand concentrations, in closed, nonconducting states. In this paper, we further explore the relationship between structure and ryanodine binding to striated muscle.

View Article and Find Full Text PDF

We have examined the effects of a number of derivatives of ryanodine on K+ conduction in the Ca2+ release channel purified from sheep cardiac sarcoplasmic reticulum (SR). In a fashion comparable to that of ryanodine, the addition of nanomolar to micromolar quantities to the cytoplasmic face (the exact amount depending on the derivative) causes the channel to enter a state of reduced conductance that has a high open probability. However, the amplitude of that reduced conductance state varies between the different derivatives.

View Article and Find Full Text PDF

We used the whole cell voltage-clamp technique to investigate the effects of disruption of Ca2+ release from the sarcoplasmic reticulum (SR) on sarcolemmal Ca2+ currents of chick myotubes kept in culture for 7 or 8 days. Ca2+ currents were recorded in 145 mM tetraethylammonium chloride and 10 mM Ca2+ with pipettes containing cesium and 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We found two components of Ca2+ current: 1) relatively large T-type currents that were activated near -50 mV and inactivated during 100-ms depolarizations to potentials positive to -60 mV (they were of similar magnitude in Ba2+ or Ca2+ and were insensitive to nifedipine) and 2) L-type currents that were activated near 0 mV and showed little or no inactivation during 100-ms depolarizations (they were larger when Ba2+ was the charge carrier and were blocked by 10 microM nifedipine).

View Article and Find Full Text PDF

Two ryanodine receptor (RyR), sarcoplasmic reticulum Ca2+ release channels, alpha and beta, co-exist in chicken skeletal muscles. To investigate a two-RyR Ca2+ release system, we compared electrically evoked Ca2+ transients in Crooked Neck Dwarf (cn/cn) cultured muscle cells, which do not make alpha RyR, and normal (+/?) cells. At day 3 in culture, Ca2+ release in +/? cells required extracellular Ca2+ (Ca2+o), and Ca2+ transients had slow kinetics.

View Article and Find Full Text PDF

The plant alkaloids ryanodine and dehydroryanodine are specific and potent modulators of the sarcoplasmic reticulum calcium release channel. In the present study, acidic, basic, and neutral side chains esters of these diterpene compounds were prepared and their pharmacologic activities were assessed. Binding affinities of the novel C10-Oeq ester derivatives for the sarcoplasmic reticulum Ca2+ release channel were evaluated with sarcoplasmic reticular vesicles prepared from rabbit skeletal muscle.

View Article and Find Full Text PDF

To define the roles of the alpha- and beta-ryanodine receptor (RyR) (sarcoplasmic reticulum Ca2+ release channel) isoforms expressed in chicken skeletal muscles, we investigated the ion channel properties of these proteins in lipid bilayers. alpha- and beta RyRs embody Ca2+ channels with similar conductances (792, 453, and 118 pS for K+, Cs+ and Ca2+) and selectivities (PCa2+/PK+ = 7.4), but the two channels have different gating properties.

View Article and Find Full Text PDF

Ryanodine binds to specific membrane proteins, altering the calcium permeability of intracellular membranes. In this study 19 ryanoids were isolated or synthesized and the structures correlated to the strength of binding to vertebrate skeletal muscle ryanodine receptors. Global minima were determined by employment of molecular mechanics and dynamics augmented by systematic searching of conformational space.

View Article and Find Full Text PDF

The ryanodine receptor (RR), an intracellular calcium release channel, has been identified in the nervous system but its contributions to neuronal function are unknown. We have utilized immunohistochemical techniques to establish the distribution of RRs in the central nervous system (CNS) of the chick as a step toward elucidating the function of RRs in this system. RR immunoreactivity is observed throughout the brain, most prominently in large neurons.

View Article and Find Full Text PDF