Shock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.
View Article and Find Full Text PDFA more complete understanding of laser-driven hohlraum plasmas is critical for the continued development and improvement of ICF experiments. In these hohlraums, self-generated electric and magnetic fields can play an important role in modifying plasma properties such as heat transport; however, the strength and distribution of electromagnetic fields in such hohlraums remain largely uncertain. To explore this question, we conducted experiments at the OMEGA laser facility, using monoenergetic proton radiography to probe laser-driven vacuum hohlraums.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate.
View Article and Find Full Text PDFThe Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond detector used for measuring multiple nuclear bang times at the National Ignition Facility. Due to the non-trivial, polycrystalline structure of these detectors, individual characterization and measurement are required to interrogate the sensitivity and behavior of charge carriers. In this paper, a process is developed for determining the x-ray sensitivity of PTOF detectors and relating it to the intrinsic properties of the detector.
View Article and Find Full Text PDFCharged particle spectrometry is a critical diagnostic to study inertial-confinement-fusion plasmas and high energy density plasmas. The OMEGA Laser Facility has two fixed magnetic charged particle spectrometers (CPSs) to measure MeV-ions. In situ calibration of these spectrometers was carried out using Am and Ra alpha emitters.
View Article and Find Full Text PDFA system of x-ray imaging spectrometer (XRIS) has been implemented at the OMEGA Laser Facility and is capable of spatially and spectrally resolving x-ray self-emission from 5 to 40 keV. The system consists of three independent imagers with nearly orthogonal lines of sight for 3D reconstructions of the x-ray emission region. The distinct advantage of the XRIS system is its large dynamic range, which is enabled by the use of tantalum apertures with radii ranging from 50 μm to 1 mm, magnifications of 4 to 35×, and image plates with any filtration level.
View Article and Find Full Text PDFIn laser-produced high-energy-density plasmas, large-scale strong magnetic fields are spontaneously generated by the Biermann battery effects when temperature and density gradients are misaligned. Saturation of the magnetic field takes place when convection and dissipation balance field generation. While theoretical and numerical modeling provide useful insight into the saturation mechanisms, experimental demonstration remains elusive.
View Article and Find Full Text PDFThis Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied.
View Article and Find Full Text PDFWe report a technique of proton deflectometry that uses a grid and an in situ reference x-ray grid image for precise measurements of magnetic fields in high-energy-density plasmas. A DHe fusion implosion provides a bright point source of both protons and x-rays, which is split into beamlets by a grid. The protons undergo deflections as they propagate through the plasma region of interest, whereas the x-rays travel along straight lines.
View Article and Find Full Text PDFOrexin receptors 42 are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [109]. Currently the only orexin receptor ligands in clinical use are suvorexant and lemborexant, which are used as hypnotics. Orexin receptor crystal structures have been solved [134, 133, 54, 117, 46].
View Article and Find Full Text PDFNew designs and a new analysis technique have been developed for an existing compact charged-particle spectrometer on the NIF and OMEGA. The new analysis technique extends the capabilities of this diagnostic to measure arbitrarily shaped ion spectra down to 1 MeV with yields as low as 10. Three different designs are provided optimized for the measurement of DD protons, THe deuterons, and HeHe protons.
View Article and Find Full Text PDFA series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.
View Article and Find Full Text PDFA new tri-particle mono-energetic backlighter based on laser-driven implosions of DTHe gas-filled capsules has been implemented at the OMEGA laser. This platform, an extension of the original DHe backlighter platform, generates 9.5 MeV deuterons from the THe reaction in addition to 14.
View Article and Find Full Text PDFWe report on the design and implementation of a new system used to characterize the energy-dependent x-ray transmission curve, Θ(E), through filters used in high-energy density physics diagnostics. Using an Amptek X-123-CdTe x-ray spectrometer together with a partially depleted silicon surface barrier detector, both the energy spectrum and total emission of an x-ray source have been accurately measured. By coupling these detectors with a custom PROTO-XRD x-ray source with interchangeable cathodes, accurate characterizations of Θ(E) for filters of varying materials and thicknesses have been obtained.
View Article and Find Full Text PDFMono-energetic proton radiography is a vital diagnostic for numerous high-energy-density-physics, inertial-confinement-fusion, and laboratory-astrophysics experiments at OMEGA. With a large number of campaigns executing hundreds of shots, general trends in DHe backlighter performance are statistically observed. Each experimental configuration uses a different number of beams and drive symmetry, causing the backlighter to perform differently.
View Article and Find Full Text PDFHot-spot shape and electron temperature (T) are key performance metrics used to assess the efficiency of converting shell kinetic energy into hot-spot thermal energy in inertial confinement fusion implosions. X-ray penumbral imaging offers a means to diagnose hot-spot shape and T, where the latter can be used as a surrogate measure of the ion temperature (T) in sufficiently equilibrated hot spots. We have implemented a new x-ray penumbral imager on OMEGA.
View Article and Find Full Text PDFThis paper presents data from experiments with protons at non-normal incidence to CR-39 nuclear track detectors, analyzing the properties of detection efficiency, proton track diameter, track contrast, and track eccentricity. Understanding the CR-39 response to protons incident at an angle is important for designing charged particle detectors for inertial confinement fusion (ICF) applications. This study considers protons with incident energies less than 3 MeV.
View Article and Find Full Text PDFThe nuclear burn history provides critical information about the dynamics of the hot-spot formation and high-density fuel-shell assembly of an Inertial Confinement Fusion (ICF) implosion, as well as information on the impact of alpha heating, and a multitude of implosion failure mechanisms. Having this information is critical for assessing the energy-confinement time τE and performance of an implosion. As the confinement time of an ICF implosion is a few tens of picoseconds, less than 10-ps time resolution is required for an accurate measurement of the nuclear burn history.
View Article and Find Full Text PDFThe detection properties of CR-39 were investigated for protons, deuterons, and tritons of various energies. Two models for the relationship between the track diameter and particle energy are presented and demonstrated to match experimental data for all three species. Data demonstrate that CR-39 has 100% efficiency for protons between 1 MeV and 4 MeV, deuterons between 1 MeV and 12.
View Article and Find Full Text PDFUnderstanding the mechanisms by which intermittent theta burst stimulation (iTBS) protocols exert changes in the default-mode network (DMN) is paramount to develop therapeutically more effective approaches in the future. While a full session (3000 pulses) of 10 Hz repetitive transcranial magnetic stimulation (HF-rTMS) reduces the functional connectivity (FC) of the DMN and the subgenual anterior cingulate cortex, the current understanding of the effects of a single session of iTBS on the DMN in healthy subjects is limited. Here, we use a previously validated target selection approach for an unprecedented investigation into the effects of a single session (1800 pulses) of iTBS over the DMN in healthy controls.
View Article and Find Full Text PDFHigh frequency repetitive transcranial magnetic stimulation (HF-rTMS) delivered to the left dorsolateral prefrontal cortex (DLPFC) is an effective treatment option for treatment resistant depression. However, the underlying mechanisms of a full session of HF-rTMS in healthy volunteers have not yet been described. Here we investigated, with a personalized selection of DLPFC stimulation sites, the effects driven by HF-rTMS in healthy volunteers (n = 23) over the default mode network (DMN) in multiple time windows.
View Article and Find Full Text PDFCR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks.
View Article and Find Full Text PDF