Publications by authors named "Sutapa Mondal Roy"

The quantum chemical descriptors based on density functional theory (DFT) are applied to predict the biological activity (log IC) of one class of acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors, viz. aminosulfonyl ureas. ACAT are very effective agents for reduction of triglyceride and cholesterol levels in human body.

View Article and Find Full Text PDF

A critical investigation on the structure, electronic properties and optical activities of a series of transition metal doped porphyrins (TMP; TM=Fe, Co, Ni) in the light of infrared and Raman spectroscopy is performed, under density functional formalism. The structure and electronic properties are studied in terms of ionization potential, electron affinity, chemical hardness (η), binding energies of the transition metals (BE) etc. The origin of the optical activities, especially the visibly active cobalt porphyrin is addressed through critical study on their infrared and Raman spectra.

View Article and Find Full Text PDF

A very new and alternate function of an antibiotic drug levofloxacin (Lv), as a highly selective, colorimetric turn-OFF/turn-ON chemosensor for metal-ions Hg and Fe, has been reported in this study. An extremely easy, very less time consuming, economical one-pot method of synthesis has been developed for the production of silver nanoparticles (AgNPs). The AgNPs that are stabilized and surface functionalized by Lv.

View Article and Find Full Text PDF

The applicability of Density Functional Theory (DFT) based descriptors for the development of quantitative structure-toxicity relationships (QSTR) is assessed for two different series of toxic aromatic compounds, viz., polyhalogenated dibenzo-p-dioxins (PHDDs) and phenols (PHs). A series of 20 compounds each for PHDDs and PHs with their experimental toxicities (IC50 and IGC50) is chosen in the present study to develop DFT based efficient quantum chemical parameters (QCPs) for explaining the toxin potential of the considered compounds.

View Article and Find Full Text PDF

The detection of intracellular fluoride was achieved by a novel Schiff base chemosensor derived from vitamin B6 cofactor (L) using fluorescence imaging technique. The sensor L was synthesized by condensation of pyridoxal phosphate with 2-aminothiophenol. The anion recognition ability of L was explored by UV-Vis and fluorescence methods in DMSO and mixed DMSO-H2O system.

View Article and Find Full Text PDF

Membrane fusion is an essential process guiding many important biological events, which most commonly requires the aid of proteins and peptides as fusogenic agents. Small drug induced fusion at low drug concentration is a rare event. Only three drugs, namely, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx), belonging to the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs) have been shown by us to induce membrane fusion successfully at low drug concentration.

View Article and Find Full Text PDF

Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles.

View Article and Find Full Text PDF

Membrane fusion is a key event in many biological processes. The fusion process, both in vivo and in vitro, is induced by different agents which include mainly proteins and peptides. For protein- and peptide-mediated membrane fusion, conformational reorganization serves as a driving force.

View Article and Find Full Text PDF