Publications by authors named "Sutanu Maiti"

l-ascorbic acid is found to be an effective and environmentally friendly reagent for remediation of Cr(VI)-contaminated soil. Soil-phase batch kinetics experiments elucidated the effects of chromium(VI) and l-ascorbic acid dosing, pH, soil-to-water ratio, and temperature on Cr(VI) reduction. An extended reductive environment was observed at a lower pH range, possibly due to ligand oxidation of several reactive intermediates.

View Article and Find Full Text PDF

Soil contaminated with hexavalent chromium seriously threatens the environment and human health. The use of FeS, which has a high redox activity and excellent reduction capacity, limits its application in soil remediation due to its premature surface oxidation and massive aggregation. To prevent premature surface oxidation and agglomeration, cetyltrimethylammonium bromide-supported nano-ferrous sulfide (CTAB-nFeS) was chemically synthesized and used for immobilizing Cr(VI) in contaminated soil.

View Article and Find Full Text PDF