The transformative impact of modern computational paradigms and technologies, such as high-performance computing (HPC), quantum computing, and cloud computing, has opened up profound new opportunities for scientific simulations. Scalable computational chemistry is one beneficiary of this technological progress. The main focus of this paper is on the performance of various quantum chemical formulations, ranging from low-order methods to high-accuracy approaches, implemented in different computational chemistry packages and libraries, such as NWChem, NWChemEx, Scalable Predictive Methods for Excitations and Correlated Phenomena, ExaChem, and Fermi-Löwdin orbital self-interaction correction on Azure Quantum Elements, Microsoft's cloud services platform for scientific discovery.
View Article and Find Full Text PDFAtomic structure prediction and associated property calculations are the bedrock of chemical physics. Since high-fidelity ab initio modeling techniques for computing the structure and properties can be prohibitively expensive, this motivates the development of machine-learning (ML) models that make these predictions more efficiently. Training graph neural networks over large atomistic databases introduces unique computational challenges, such as the need to process millions of small graphs with variable size and support communication patterns that are distinct from learning over large graphs, such as social networks.
View Article and Find Full Text PDFDeveloping prediction models for emerging infectious diseases from relatively small numbers of cases is a critical need for improving pandemic preparedness. Using COVID-19 as an exemplar, we propose a transfer learning methodology for developing predictive models from multi-modal electronic healthcare records by leveraging information from more prevalent diseases with shared clinical characteristics. Our novel hierarchical, multi-modal model ([Formula: see text]) integrates baseline risk factors from the natural language processing of clinical notes at admission, time-series measurements of biomarkers obtained from laboratory tests, and discrete diagnostic, procedure and drug codes.
View Article and Find Full Text PDFJ Chem Phys
July 2020
We describe a method for the post-hoc interpretation of a neural network (NN) trained on the global and local minima of neutral water clusters. We use the structures recently reported in a newly published database containing over 5 × 10 unique water cluster networks (HO) of size N = 3-30. The structural properties were first characterized using chemical descriptors derived from graph theory, identifying important trends in topology, connectivity, and polygon structure of the networks associated with the various minima.
View Article and Find Full Text PDF