Publications by authors named "Sutada Mungpakdee"

Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA).

View Article and Find Full Text PDF

Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis.

View Article and Find Full Text PDF

Far more intimate knowledge of scleractinian coral biology is essential in order to understand how diverse coral-symbiont endosymbioses have been established. In particular, molecular and cellular mechanisms enabling the establishment and maintenance of obligate endosymbiosis with photosynthetic dinoflagellates require further clarification. By extension, such understanding may also shed light upon environmental conditions that promote the collapse of this mutualism.

View Article and Find Full Text PDF

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.

View Article and Find Full Text PDF

Background: Dinoflagellates are known for their capacity to form harmful blooms (e.g., "red tides") and as symbiotic, photosynthetic partners for corals.

View Article and Find Full Text PDF

When mutated in mammals, paired-like homeobox Prop1 gene produces highly variable pituitary phenotypes with impaired regulation of Pit1 and eventually defective synthesis of Pit1-regulated pituitary hormones. Here we have identified fish prop1 orthologs, confirmed their pituitary-specific expression, and blocked the splicing of zebrafish prop1 transcripts using morpholino oligonucleotides. Very early steps of the gland formation seemed unaffected based on morphology and expression of early placodal marker pitx.

View Article and Find Full Text PDF

Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive.

View Article and Find Full Text PDF

Hox genes encode transcription factors that play important roles in patterning the anterior-posterior (A-P) body axis. In vertebrates, up to 14 Hox genes are physically linked in 4-13 chromosomal clusters. Their expression patterns obey spatial and temporal collinearity.

View Article and Find Full Text PDF

Several transcription regulators play key roles during pituitary morphogenesis. Well known intrinsic signals of the adenohypophysis such as the K(50)paired-like homeodomain proteins regulate commitment, proliferation, differential specification and maintenance of adenohypophyseal cells. We have cloned and successively characterized the mRNA localization of three pitx gene-pairs and three of their splice variants in salmon, pitx1alpha, pitx1beta; pitx2alpha, pitx2beta; pitx3alpha, pitx3beta; pitx1alphash, pitx1betash and pitx2alphaA.

View Article and Find Full Text PDF

Hox cluster organization represents a valuable marker to study the effects of recent genome duplication in salmonid fish (25-100 Mya). Using polymerase chain reaction amplification of cDNAs, BAC library screening, and genome walking, we reconstructed 13 Hox clusters in the Atlantic salmon containing 118 Hox genes including 8 pseudogenes. Hox paralogs resulting from the genome duplication preceding the radiation of ray-finned fish have been much better preserved in salmon than in other model teleosts.

View Article and Find Full Text PDF

Changes in gene expression play a critical role in enhancing the ability of cyanobacteria to survive under cold conditions. In the present study, Spirulina platensis cultures were grown at the optimal growth temperature, in the light, before being transferred to dark conditions at 22 degrees C. Two dimensional-differential gel electrophoresis was then performed to separate differentially expressed proteins that were subsequently identified by MS.

View Article and Find Full Text PDF