Ultrafine cerium oxide nanorods are produced from rapidly liquid quenched Ce-Al alloy precursors by a corrosion method through the selective leaching of Al and the oxidation of Ce in an alkaline medium under mild conditions. The obtained nanorods, having 5-7 nm diameter, exhibit unprecedented low-temperature oxygen-storage capacity (OSC) performance.
View Article and Find Full Text PDFUltrafine sodium titanate nanowires are produced from TiAl alloy precursors via a nonthermal process where Al leaching and Ti oxidation occur simultaneously in an alkaline medium. The obtained nanowires demonstrate a layered crystal structure with a diameter of a few nanometers and exhibit remarkable Sr ion-exchange properties.
View Article and Find Full Text PDFOxide heterointerfaces often trigger unusual electronic properties that are absent in respective bulks. Here, direct evidence is offered for spontaneously assembled local structural distortions in a single-phase bulk, which confine electrons to within an atomic layer with notable orbital reconstruction and coupling, close the forbidden band, induce a ferromagnetic ordering, and give rise to a strongly anisotropic, spin-polarized quasi-one-dimensional electron gas.
View Article and Find Full Text PDFDirect observation of delithiated structures of LiCoO(2) at atomic scale has been achieved using spherical aberration-corrected scanning transmission electron microscopy (STEM) with high-angle annular-dark-field (HAADF) and annular-bright-field (ABF) techniques. The ordered Li, Co, and O columns for LiCoO(2) nanoparticles are clearly identified in ABF micrographs. Upon the Li ions extraction from LiCoO(2), the Co-contained (003) planes distort from the bulk to the surface region and the c-axis is expanded significantly.
View Article and Find Full Text PDFWell-defined Li(4)Ti(5)O(12) nanosheets terminated with rutile-TiO(2) at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO(2) terminated Li(4)Ti(5)O(12) nanosheets show much improved rate capability and specific capacity compared with pure Li(4)Ti(5)O(12) nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO(2) as a carbon-free coating layer to improve the kinetics of Li(4)Ti(5)O(12) toward fast lithium insertion/extraction.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2012
A highly ordered interface between LiFePO(4) phase and FePO(4) phase with staging structure along the a axis and perpendicular to the b axis direction has been observed for the first time, in a partially chemically delithiated Li(0.90)Nb(0.02)FePO(4) by advanced aberration-corrected annular-bright-field (ABF) scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFThe ability to resolve spatially and identify chemically atoms in defects would greatly advance our understanding of the correlation between structure and property in materials. This is particularly important in polycrystalline materials, in which the grain boundaries have profound implications for the properties and applications of the final material. However, such atomic resolution is still extremely difficult to achieve, partly because grain boundaries are effective sinks for atomic defects and impurities, which may drive structural transformation of grain boundaries and consequently modify material properties.
View Article and Find Full Text PDFLithium ions in LiFePO(4) were observed directly at atomic resolution by an aberration-corrected annular-bright-field scanning transmission electron microscopy technique. In addition, it was found in partially delithiated LiFePO(4) that the remaining lithium ions preferably occupy every second layer, along the b axis, analogously to the staging phenomenon observed in some layered intercalation compounds. This new finding challenges previously proposed LiFePO(4)/FePO(4) two-phase separation mechanisms.
View Article and Find Full Text PDFCoaxing correlated materials to the proximity of the insulator-metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La(0.
View Article and Find Full Text PDFLocal structure, chemistry, and bonding at interfaces often radically affect the properties of materials. A combination of scanning transmission electron microscopy and density functional theory calculations reveals an atomic layer of carbon at a SiC/Ti3 SiC2 interface in Ohmic contact to p-type SiC, which results in stronger adhesion, a lowered Schottky barrier, and enhanced transport. This is a key factor to understanding the origin of the Ohmic nature.
View Article and Find Full Text PDFWe report the microstructure and gas-sensing properties of a nonequilibrium TiO(2)-SnO(2) solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO(2)-SnO(2) sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
June 2003
Nucleation and growth of nanotwins in Si grown from Al-Si liquid have been observed directly using an in situ heating experiment in a high-resolution transmission electron microscope. Nanotwins are nucleated at the triple point between a vacuum and the solid-liquid interface. When two parallel twins, the mirror planes of which are separated slightly, encounter each other, very complicated atomic arrangements are formed.
View Article and Find Full Text PDF