Publications by authors named "Susumu Tomono"

Detecting antibodies, particularly those targeting donor human leukocyte antigens in organ transplantation and self-antigens in autoimmune diseases, is crucial for diagnosis and therapy. Radioprotective 105 (RP105), a Toll-like receptor family protein, is expressed in immune-competent cells, such as B cells. Studies in mice have shown that the anti-mouse RP105 antibody strongly activates B cells and triggers an adjuvant effect against viral infections.

View Article and Find Full Text PDF

Aspirin, a nonsteroidal anti-inflammatory drug, has been proven effective in a clinical trial of carcinogenesis blockade. However, various modes of action have been reported for these effects. Thus, in this study, we aimed to present reasonable mode of actions as a proof of concept for human trials, especially trials for patients with familial adenomatous polyposis (FAP).

View Article and Find Full Text PDF

Sa15-21, a monoclonal antibody against mouse Toll-like receptor (TLR) 4, can protect mice from lipopolysaccharide (LPS)/D-galactosamine-induced acute lethal hepatitis. Herein, we investigated the molecular mechanisms underlying Sa15-21-mediated regulation of TLR4 signaling in macrophages. Results showed that Sa15-21 enhanced the production of proinflammatory cytokines and attenuated the production of anti-inflammatory cytokines in LPS-stimulated macrophages.

View Article and Find Full Text PDF

For its cell surface expression, radioprotective 105 (RP105) - an orphan Toll-like receptor - must form a complex with a soluble glycoprotein called myeloid differentiation 1 (MD-1). The number of RP105-negative cells is significantly increased in patients with systemic lupus erythematosus (SLE); however, to elucidate the mechanism underlying this increase, how RP105 is expressed on the cell surface depending on MD-1 should be investigated. We demonstrated that RP105 exhibits two forms depending on MD-1 and its two N-glycosylation sites, N96 and N156.

View Article and Find Full Text PDF
Article Synopsis
  • * Results showed that DWCNTs cause significant lung inflammation and increase the presence of macrophages and certain cytokines, particularly at higher doses (0.5 mg).
  • * While there was a notable incidence of lung tumors in DWCNT-treated rats, the mechanism behind the observed pleural mesotheliomas does not appear to be applicable to humans, indicating potential differences in response between species.
View Article and Find Full Text PDF

Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases.

View Article and Find Full Text PDF

The gut microbiome is closely related to gut metabolic functions, and the gut microbiome and host metabolic functions affect each other. MIYAIRI 588 (CBM 588) upregulates protectin D1 production in host colon tissue following G protein-coupled receptor (GPR) 120 activation to protect gut epithelial cells under antibiotic-induced dysbiosis. However, how CBM 588 enhances polyunsaturated fatty acid (PUFA) metabolites remains unclear.

View Article and Find Full Text PDF

Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models.

View Article and Find Full Text PDF

Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum.

View Article and Find Full Text PDF

Colorectal cancer is the fourth leading cause of cancer death worldwide, and it is important to establish effective methods for preventing colorectal cancer. One effective prevention strategy could be the use of antioxidants. However, the role of the direct antioxidative function of antioxidants against carcinogenesis has not been clarified.

View Article and Find Full Text PDF

Bee venom (BV) induces skin inflammation, characterized by erythema, blisters, edemas, pain and itching. Although BV has been found to have an inhibitory effect on toll-like receptors (TLRs), we here show that BV enhances keratinocyte responses to polyinosinic-polycytidylic acid [poly(I:C)], a ligand for TLR3. Our results revealed that the enhanced TLR activity was primarily induced by secretory phospholipase A2 (sPLA2), a component of BV (BV-sPLA2).

View Article and Find Full Text PDF

Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium that has previously been used to prevent antibiotic-associated diarrhea. However, the underlying mechanism by which CBM 588 protects the gut epithelial barrier remains unclear. Here, we show that CBM 588 increased the abundance of Bifidobacterium, Lactobacillus, and Lactococcus species in the gut microbiome and also enhanced the intestinal barrier function of mice with antibiotic-induced dysbiosis.

View Article and Find Full Text PDF

Sesame lignans, which are biologically active compounds present in sesame seeds and oil, are known to have neuroprotective effects in several models of brain dysfunction. However, the effects of sesame lignans on age-related brain dysfunction are not clear and were thus investigated in the present study using a senescence-accelerated mouse (SAMP10). Two-month-old male SAMP10 mice were administrated a basal diet with 0% or 0.

View Article and Find Full Text PDF

IgE plays a key role in allergies by binding to allergens and then sensitizing mast cells through the Fc receptor, resulting in the secretion of proinflammatory mediators. Therefore, IgE is a major target for managing allergies. Previous studies have reported that oligomannose on IgE can be a potential target to inhibit allergic responses.

View Article and Find Full Text PDF

Colorectal cancer is one of the leading causes of death worldwide. Reactive oxygen species produce oxidative stress and contribute to colorectal carcinogenesis. Because dietary citrus has been shown to reduce oxidative stress, we investigated the effects of citrus peel extract at dilutions of 1/200-1/500 on the activity of oxidative-stress-related transcription factors, including AP-1, NF-κB, NRF2, p53, and STAT3, in human colon cancer cell line HCT116 cells using a luciferase reporter gene assay.

View Article and Find Full Text PDF

It is important to establish effective methods for preventing colorectal cancer because the number of colorectal cancer deaths is increasing. Erythromycin one of the macrolide antibiotics, has been shown to exert pleiotropic effects, such as anti-inflammatory and anti-oxidative effects, on mammalian cells. In the present study, we aimed to evaluate the preventive effects of erythromycin on intestinal carcinogenesis.

View Article and Find Full Text PDF

Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts.

View Article and Find Full Text PDF

This study aimed to identify gastric mucosal protectants that suppress intestinal tumorigenesis in a mouse model. We chose six gastric mucosal protectants (ecabet sodium hydrate, irsogladine maleate, rebamipide, sofalcone, teprenone and troxipide) and examined their effects on the activity of oxidative stress-related transcriptional factors, including AP-1, NF-jB, NRF2, p53 and STAT3, in Caco-2 cells using a luciferase reporter gene assay. Among the six protectants, irsogladine maleate clearly inhibited NF-jB and AP-1 transcriptional activity.

View Article and Find Full Text PDF

A new analytical method has been developed for profiling lipophilic reactive carbonyls (RCs) such as aldehydes and ketones in biological samples using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with selected reaction monitoring (SRM). The method consists of several phases, including (1) extraction of lipophilic RCs with a chloroform/methanol mixture; (2) derivatization of the extracted RCs with dansyl hydrazine (DH); and (3) SRM detection of the characteristic product ion of the 5-dimethylaminonaphthalene-1-sulfonyl moiety (m/z 236.1).

View Article and Find Full Text PDF

There is rising interest in non-enzymatic cholesterol oxidation because the resulting oxysterols have biological activity and can be used as non-invasive markers of oxidative stress in vivo. The preferential site of oxidation of cholesterol by highly reactive species is at C7 having a relatively weak carbon-hydrogen bond. Cholesterol autoxidation is known to proceed via two distinct pathways, a free radical pathway driven by a chain reaction mechanism (type I autoxidation) and a non-free radical pathway (type II autoxidation).

View Article and Find Full Text PDF

The cytotoxic effects of various oxysterols on several culture cells were examined. Ozonolysis products of cholesterol, secosterols (3β-hydroxy-5-oxo-5,6-secocholestan-6-al) and its aldolization product (3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde) and their keto alcohol and acid derivatives, were found to have potent cytotoxic activities, as compared with major endogenous oxysterols such as 5β,6β-epoxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, and 25-hydroxycholesterol. Secosterols might play important roles in tissue damage and inflammation-associated diseases.

View Article and Find Full Text PDF

The reaction products of three major cholesteryl esters, cholesteryl palmitate (C16:0-CE), cholesteryl oleate (C18:1-CE), and cholesteryl linoleate (C18:2-CE), present in human low-density lipoprotein (LDL) treated with ozone were isolated and characterized. In vitro ozonization of C16:0-CE was found to form the palmitoyl ester of secosterol-A (3β-hydroxy-5-oxo-5,6-secocholestan-6-al) and its aldolization product secosterol-B (3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde). On the other hand, when C18:1-CE and C18:2-CE were oxidized by ozone, the aldehyde 9-oxononanoyl cholesterol (9-ONC) was formed as a primary product, which was then further oxidized to form 9-oxononanoyl secosterol-A (9-ON-secoA) and 9-oxononanoyl secosterol-B (9-ON-secoB).

View Article and Find Full Text PDF

An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuka Long-Evans Tokushima Fatty rats. Ten-week old Otsuka Long-Evans Tokushima Fatty (n = 40) and control Long-Evans Tokushima Otsuka rats (n = 20) were given drinking water containing 20% sucrose to accelerate the development of diabetic nephropathy.

View Article and Find Full Text PDF

In this study, we have developed a novel method to identify isothiocyanate (ITC)-targeted molecules using two well-studied ITCs: benzyl ITC (BITC) and phenethyl ITC (PEITC). The principle of this method is based on identifying a pattern of differences between BITC and PEITC given that they show similar chemical and biological behaviors. For method validation, dithiothreitol-reduced bovine insulin as a model molecule was incubated with either BITC or PEITC, and digested peptides were analyzed by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and liquid chromatography quadrupole TOF-MS (LC-Q-TOF-MS).

View Article and Find Full Text PDF

The cholesterol ozonolysis products secosterol-A and its aldolization product secosterol-B were recently detected in human atherosclerotic tissues and brain specimens, and have been postulated to play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. We examined several oxidized cholesterol metabolites including secosterol-A, secosterol-B, 25-hydroxycholesterol, 5β,6β-epoxycholesterol and 7-ketocholesterol for their effects on the activities of three nitric oxide synthases. In contrast to other oxidized metabolites, secosterol-A was found to be a potent inhibitor against the neuronal- and endothelial-type, but not the inducible-type nitric oxide synthase, with IC(50) values of 22 ± 1 and 50 ± 5 µM, respectively.

View Article and Find Full Text PDF