Our previous studies indicate the abundant and diverse presence of yet-to-be-cultured microorganisms in the micropore-filtered fractions of various environmental samples. Here, we isolated a novel bacterium (designated as strain TMPK1T) from a 0.45-μm-filtered soil suspension by using a gel-filled microwell array device comprising 900 microwells and characterized its phylogenetic and physiological features.
View Article and Find Full Text PDFThis study integrated bacterial community and soil chemicals to characterize the soil ecosystem in an open upland field managed by six controlled fertilizer programs using the minimum amount of pesticides. Amplicon sequencing the 16S rRNA gene revealed that inorganic nitrogen fertilizer and compost altered the diversity and structure of the soil bacterial community throughout buckwheat (Fagopyrum esculentum Moench 'Hitachiakisoba') cultivation. The bacterial community comprised three clusters that contained bacteria that are prevalent in soils fertilized with nitrogen (cluster 1, 340 taxa), without nitrogen and compost (cluster 2, 234 taxa), and with compost-fertilized (cluster 3, 296 taxa).
View Article and Find Full Text PDFWe report the draft genome sequence of novel bacterium strain TMPK1, isolated from a micropore-filtered soil suspension. This strain has a genome of 4,249,070 bp, comprising 4,151 protein-coding sequences. The genome sequence data further suggest that strain TMPK1 is an alphaproteobacterium capable of carotenoid production.
View Article and Find Full Text PDFFermentative production of L-cysteine has been established using Escherichia coli. In that procedure, thiosulfate is a beneficial sulfur source, whereas repressing sulfate utilization. We first found that thiosulfate decreased transcript levels of genes related to sulfur assimilation, particularly whose expression is controlled by the transcription factor CysB.
View Article and Find Full Text PDFSin1 is a substrate-binding subunit of target of rapamycin complex 2 (TORC2), an evolutionarily conserved protein kinase complex. In fission yeast, Sin1 has also been identified as a protein that interacts with Spc1 (also known as Sty1) in the stress-activated protein kinase (SAPK) pathway. Therefore, this study examined the relationship between TORC2 and Spc1 signaling.
View Article and Find Full Text PDFS-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1).
View Article and Find Full Text PDFIntracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm.
View Article and Find Full Text PDFThe Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2.
View Article and Find Full Text PDFIn a "two-component system," extracellular stimuli are transmitted by the transfer of a phosphoryl group from a sensor histidine kinase to a response regulator (RR), a mechanism referred to as phosphorelay. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted by phosphorelay to the Mcs4 RR, which activates the Spc1 MAP kinase (MAPK) cascade. We previously demonstrated that a glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physically interacts with Mcs4 and promotes phosphorelay signaling to Mcs4.
View Article and Find Full Text PDFThe Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a "response regulator" protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinases. Here we show that Mcs4 has an unexpected, phosphorelay-independent function in promoting heteromer association between the Wis4 and Win1 MAPKKKs.
View Article and Find Full Text PDFBackground: Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E.
View Article and Find Full Text PDFBackground: From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators.
View Article and Find Full Text PDFMethods Enzymol
January 2011
In the fission yeast Schizosaccharomyces pombe, the Mak2/3 sensor histidine kinases (HKs), the Mpr1 histidine-containing phosphotransfer (HPt) protein, and the Mcs4 response regulator (RR) constitute a multistep phosphorelay, which is connected to a stress-activated mitogen-activated protein kinase (MAPK) cascade. This hybrid signaling pathway senses H2O2 and transmits the stress signal by sequential phosphorylation of the component proteins, whose physical interactions play crucial roles to attain eventual activation of Spc1 MAPK. This chapter describes methodological details of the copurification assays in S.
View Article and Find Full Text PDFIntracellular thiols like L-cysteine and glutathione play a critical role in the regulation of cellular processes. Escherichia coli has multiple L-cysteine transporters, which export L-cysteine from the cytoplasm into the periplasm. However, the role of L-cysteine in the periplasm remains unknown.
View Article and Find Full Text PDFWork with cereals (barley and wheat) and a legume (Medicago truncatula) has established thioredoxin h (Trx h) as a central regulatory protein of seeds. Trx h acts by reducing disulfide (S-S) groups of diverse seed proteins (storage proteins, enzymes, and enzyme inhibitors), thereby facilitating germination. Early in vitro protein studies were complemented with experiments in which barley seeds with Trx h overexpressed in the endosperm showed accelerated germination and early or enhanced expression of associated enzymes (alpha-amylase and pullulanase).
View Article and Find Full Text PDFPhosphorelay signaling of environmental stimuli by two-component systems is prevailing in bacteria and also utilized by fungi and plants. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted from the Mak2/3 sensor kinases to the Mpr1 histidine-containing phosphotransfer (HPt) protein and finally to the Mcs4 response regulator, which activates a MAP kinase cascade. Here we show that, unexpectedly, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physically associates with the Mcs4 response regulator and stress-responsive MAP kinase kinase kinases (MAPKKKs).
View Article and Find Full Text PDFMembers of the mitogen-activated protein kinase (MAPK) subfamily responsive to environmental stress stimuli are known as SAPKs (stress-activated protein kinases), which are conserved from yeast to humans. In the fission yeast Schizosaccharomyces pombe, Spc1/Sty1 SAPK is activated by diverse forms of stress, such as osmostress, oxidative stress and heat shock, and induces gene expression through the Atf1 transcription factor. Sin1 (SAPK interacting protein 1) was originally isolated as a protein that interacts with Spc1, and its orthologs were also found in diverse eukaryotes.
View Article and Find Full Text PDFBackground: The fission yeast Schizosaccharomyces pombe has a cylindrical cell shape, for which growth is strictly limited to both ends, and serves as an excellent model system for genetic analysis of cell-polarity determination. Previous studies identified a cell-end marker protein, Tea1, that is transported by cytoplasmic microtubules to cell tips and recruits other cell-end factors, including the Dyrk-family Pom1 kinase. The deltatea1 mutant cells cannot grow in a bipolar fashion and show T-shaped morphology after heat shock.
View Article and Find Full Text PDFBackground: Animal models are needed that mimic human IgE-mediated peanut and tree nut allergy. Atopic dogs have been previously used in a model of food allergy to cow's milk, beef, wheat, and soy, with the demonstration of specific IgE production and positive oral challenges similar to those seen in human subjects.
Objective: We sought to sensitize dogs to peanut, walnut, and Brazil nut and to assess whether sensitization is accompanied by clinical reactions and whether there is cross-reactivity among the different preparations.