Accurately identifying neoantigens is crucial for developing effective cancer vaccines and improving tumor immunotherapy. Mass spectrometry-based immunopeptidomics has emerged as a promising approach to identifying human leukocyte antigen (HLA) peptides presented on the surface of cancer cells, but false-positive identifications remain a significant challenge. In this study, liquid chromatography-tandem mass spectrometry-based proteomics and next-generation sequencing were utilized to identify HLA-presenting neoantigenic peptides resulting from non-synonymous single nucleotide variations in tumor tissues from 18 patients with renal cell carcinoma or pancreatic cancer.
View Article and Find Full Text PDFNeoantigens derived from tumor-specific genetic mutations might be suitable targets for cancer immunotherapy because of their high immunogenicity. In the current study, we evaluated the immunogenicity of 10 driver mutations that are frequently expressed in various cancers using peripheral blood mononuclear cells from healthy donors ( = 25). Of the 10 synthetic peptides (27-mer) derived from these mutations, the six peptides from KRAS-G12D, KRAS-G12R, KRAS-G13D, NRAS-Q61R, PIK3CA-H1047R, and C-Kit-D816V induced T cell responses, suggesting that frequent driver mutations are not always less immunogenic.
View Article and Find Full Text PDFWiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disease affecting cell morphology and signal transduction in hematopoietic cells. The function of Wiskott-Aldrich syndrome protein (WASp) and its partners in protein interaction have been studied intensively in mice; however, detailed biochemical characterization of its signal transduction and assessment of its functional consequence in human WASp-deficient lymphocytes remain difficult. In this study, we generated Nalm-6 cells in which the WAS protein gene (WASP) was disrupted by homologous recombination-based gene targeting and a cell-permeable form of recombinant WASp for functional study.
View Article and Find Full Text PDFConditional gene knockout by homologous recombination combined with an inducible gene expression system is a powerful approach for studying gene function, although homologous recombination in human cells occurs infrequently. The tetracycline-regulated gene expression (Tet-Off) system is a convenient method for achieving conditional gene knockout, but it is not always promising in Nalm-6, a rare human cell line highly effective for gene targeting. Here we modified the Tet-Off system and applied it to the Nalm-6 cell line successfully by using an internal ribosome entry site to drive a selectable marker from the same tetracycline-responsive promoter for the transgene.
View Article and Find Full Text PDFIn higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines.
View Article and Find Full Text PDFTopoisomerase II (Top2) is a ubiquitous nuclear enzyme that relieves torsional stress in chromosomal DNA during various cellular processes. Agents that target Top2, involving etoposide, doxorubicin, and mitoxantrone, are among the most effective anticancer drugs used in the clinic. Mammalian cells possess two genetically distinct Top2 isoforms, both of which are the target of these agents.
View Article and Find Full Text PDFArtemis is a recently identified factor involved in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Here, we performed targeted disruption of the Artemis gene (ARTEMIS) in the human pre-B cell line Nalm-6. Unexpectedly, we found that cells lacking Artemis exhibit increased sensitivity to low doses, but not high doses, of ionizing radiation.
View Article and Find Full Text PDFTargeted gene disruption is a powerful tool for studying gene function in cells and animals. In addition, this technology includes a potential to correct disease-causing mutations. However, constructing targeting vectors is a laborious step in the gene-targeting strategy, even apart from the low efficiency of homologous recombination in mammals.
View Article and Find Full Text PDFGene targeting provides a powerful means for analyzing gene function, as exemplified by knockout mouse studies and recent work with the highly recombinogenic chicken DT40 B-lymphocyte line. In human cultured cells, however, the low frequency of gene targeting is a serious barrier to efficiently generate knockout clones. Moreover, commonly used human cell lines are karyotypically abnormal or unstable.
View Article and Find Full Text PDFKu, the heterodimer of Ku70 and Ku86, plays crucial roles in non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. It has recently been reported that heterozygous disruption of the human KU86 locus results in haploinsufficient phenotypes, including retarded growth, increased radiosensitivity, elevated p53 levels and shortened telomeres. In this paper, however, we show that heterozygous inactivation of either the KU70 or KU86 gene does not cause any defects in cell proliferation or DSB repair in human somatic cells.
View Article and Find Full Text PDFDNA topoisomerase II (Top2) inhibitors are useful as anticancer agents, mostly by virtue of their ability to induce DNA double-strand breaks (DSBs). These DSBs are repaired almost exclusively by Rad52-dependent homologous recombination (HR) in yeast. However, we have recently shown that in vertebrate cells such lesions are primarily repaired by nonhomologous end-joining, but not HR.
View Article and Find Full Text PDFIn vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizygous for Lig4 exhibits hypersensitivity to topoisomerase II (Top2) inhibitors, demonstrating a crucial role for the NHEJ pathway in repair of Top2-induced DNA damage in vertebrates.
View Article and Find Full Text PDFA number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks.
View Article and Find Full Text PDF