Publications by authors named "Susumu Hirabayashi"

Cancer continues to be a leading cause of death worldwide, largely due to metastases and cachexia. It is a complex disease that is commonly associated with a variety of comorbidities. With global increases in ageing populations and obesity, multimorbidity is a rapidly growing clinical issue in the context of cancer.

View Article and Find Full Text PDF

Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis.

View Article and Find Full Text PDF

Somatic scribble mutant cells are selectively eliminated from the growing Drosophila tissue through cell competition, a tumor-suppressing mechanism that ensures tissue integrity. In this issue of Developmental Cell, Sanaki et al. demonstrate that organismal hyperinsulinemia promotes tumorigenesis by abrogating local cell competition.

View Article and Find Full Text PDF

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC.

View Article and Find Full Text PDF

Accumulating epidemiological evidence indicates a strong clinical association between obesity and an increased risk of cancer. The global pandemic of obesity indicates a public health trend towards a substantial increase in cancer incidence and mortality. However, the mechanisms that link obesity to cancer remain incompletely understood.

View Article and Find Full Text PDF

Cancer cells demand excessive nutrients to support their proliferation but how cancer cells sense and promote growth in the nutrient favorable conditions remain incompletely understood. Epidemiological studies have indicated that obesity is a risk factor for various types of cancers. Feeding Drosophila a high dietary sugar was previously demonstrated to not only direct metabolic defects including obesity and organismal insulin resistance, but also transform Ras/Src-activated cells into aggressive tumors.

View Article and Find Full Text PDF

The risk of specific cancers increases in patients with metabolic dysfunction, including obesity and diabetes. Here, we use Drosophila as a model to explore the effects of diet on tumor progression. Feeding Drosophila a diet high in carbohydrates was previously demonstrated to direct metabolic dysfunction, including hyperglycemia, hyperinsulinemia, and insulin resistance.

View Article and Find Full Text PDF

The Hippo pathway restricts cell growth and proliferation and promotes apoptosis to control organ size. The Drosophila melanogaster isoform of RASSF (Ras association domain family; dRASSF) antagonizes proapoptotic Hippo signaling by inhibiting the binding of the adaptor protein Salvador to the kinase Hippo. Paradoxically, however, dRASSF also functions as a tumor suppressor.

View Article and Find Full Text PDF

The Ras-association domain family (RASSF) comprises six members (RASSF1-6) that each harbors a RalGDS/AF-6 (RA) and Sav/RASSF/Hippo (SARAH) domain. The RASSF proteins are known as putative tumor suppressors but RASSF6 has not yet been studied. We have here characterized human RASSF6.

View Article and Find Full Text PDF

Background And Objective: The purpose of this study was to obtain an antibody that would be useful for investigating the yet unclear molecular mechanism underlying the differentiation of lung alveolar type I and II cells.

Methods: Monoclonal antibodies were raised against membrane proteins from embryonal day 18.5 rat lungs and characterized by immunoblotting on rat lung lysates at various developmental stages to select an appropriate clone.

View Article and Find Full Text PDF

Synaptic scaffolding molecule (S-SCAM) is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1 (PDZ), a guanylate kinase and two WW domains. It interacts with NMDA receptor subunits, neuroligin and beta-catenin, and is involved in the accumulation of neuroligin at excitatory synapses. In this study, we have demonstrated S-SCAM is localized at inhibitory synapses in rat primary cultured hippocampal neurons.

View Article and Find Full Text PDF

Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach.

View Article and Find Full Text PDF

Membrane-associated guanylate kinase inverted (MAGI)-1 plays a role as a scaffold at cell junctions in non-neuronal cells, while S-SCAM, its neuronal isoform, is involved in the organization of synapses. A search for MAGI-1-interacting proteins by yeast two-hybrid screening of a kidney cDNA library yielded dendrin. As dendrin was originally reported as a brain-specific postsynaptic protein, we tested the interaction between dendrin and S-SCAM and revealed that dendrin binds to the WW domains of S-SCAM.

View Article and Find Full Text PDF

MAGUK with inverted domain structure-1 (MAGI-1) is a membrane-associated protein with one guanylate kinase, six PSD-95/Dlg-A/ZO-1 (PDZ), and two WW domains and is localized at tight junctions in epithelial cells. MAGI-1 interacts with various proteins and is proposed to function as a scaffold protein. In the previous study, we discovered a MAGI-1-interacting cell adhesion molecule junctional adhesion molecule 4 (JAM4).

View Article and Find Full Text PDF

S-SCAM has a similar molecular organization to PSD-95. Both of them interact with a cell adhesion molecule, neuroligin. We previously reported that beta-catenin binds S-SCAM and recruits it to synapses.

View Article and Find Full Text PDF

Junctional adhesion molecule (JAM) 4 is a member of immunoglobulin superfamily that interacts with MAGI-1, a membrane-associated guanylate kinase protein at tight junctions in epithelial cells. We prepared Madin-Darby canine kidney II (MDCK) cells expressing JAM4 (MDCK-JAM4) and compared them with wild MDCK cells. The treatment of hepatocyte growth factor (HGF) induced more prominent branching and scattering in MDCK-JAM4 cells.

View Article and Find Full Text PDF

Synaptic scaffolding molecule (S-SCAM) is a synaptic protein that consists of PDZ domains, a guanylate kinase domain, and WW domains. It interacts with N-methyl-d-aspartate receptor subunits, neuroligin, and beta-catenin. Here, we identified Axin as a novel binding partner of S-SCAM.

View Article and Find Full Text PDF

Lung alveolar epithelial cells are comprised of type I (ATI) and type II (ATII) cells. ATI cells are polarized, although they have very flat morphology. The identification of marker proteins for apical and basolateral membranes of ATI cells is important to investigate into the differentiation of ATI cells.

View Article and Find Full Text PDF

MAGI-1 and CASK are membrane-associated guanylate kinases of epithelial junctions. MAGI-1 is localized at tight junctions in polarized epithelial cells, whereas CASK is localized along the lateral membranes. We obtained the KIAA0769 gene product through the yeast two-hybrid screening using MAGI-1 as a bait and named it Carom.

View Article and Find Full Text PDF

Background: Membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1) is a scaffolding protein at tight junctions (TJs). We have recently identified junctional adhesion molecule 4 (JAM4) as a MAGI-1-interacting protein. JAM4 belongs to the immunoglobulin superfamily and mediates Ca2+-independent adhesion.

View Article and Find Full Text PDF

MAGI-1 is a membrane-associated guanylate kinase protein at tight junctions in epithelial cells. It interacts with various molecules and functions as a scaffold protein at cell junctions. We report here a novel MAGI-1-binding protein that we named junctional adhesion molecule 4 (JAM4).

View Article and Find Full Text PDF

PAPIN has six PDZ domains and interacts with p0071, a catenin-related protein. Recent studies have revealed that catenins determine the subcellular localization of some PDZ proteins. We have examined whether the localization of PAPIN is determined by p0071 in epithelial cells.

View Article and Find Full Text PDF

C2PA is a protein of unknown function that is expressed in spermatocytes. PDZ-RGS3 is a signaling molecule whose PDZ domain binds Ephrin-B2 and mediates reverse signaling of this protein. C2PA and PDZ-RGS3 have identical PDZ domains.

View Article and Find Full Text PDF