Publications by authors named "Susu Ren"

Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness.

View Article and Find Full Text PDF

The development of minimally invasive cardiac patches, either as hemostatic dressing or treating myocardial infarction, is of clinical significance but remains a major challenge. Designing such patches often requires simultaneous consideration of several material attributes, including bioabsorption, non-toxicity, matching the mechanic properties of heart tissues, and working efficiently in wet and dynamic environments. Using genetically engineered multi-domain proteins, a printed bi-layer proteinaceous hydrogel patch for heart failure treatments is reported.

View Article and Find Full Text PDF

Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities.

View Article and Find Full Text PDF