Publications by authors named "Sussie Dalvin"

Atlantic salmon () is repeatedly exposed to and infected with ectoparasitic salmon lice () both in farms and in nature. However, this is not reflected in laboratory experiments where fish typically are infected only once. To investigate if a previous lice infection affects host response to subsequent infections, fish received 4 different experimental treatments; including 2 groups of fish that had previously been infected either with adult or infective salmon lice larvae (copepodids).

View Article and Find Full Text PDF

Atlantic salmon (Salmo salar) are highly susceptible to infestations with the ectoparasite Lepeophtheirus salmonis, the salmon louse. Infestations elicit an immune response in the fish, but the response does not lead to parasite clearance, nor does it protect against subsequent infestations. It is, however, not known why the immune response is not adequate, possibly because the local response directly underneath the louse has been poorly evaluated.

View Article and Find Full Text PDF

The aims of this study were to compare male and female sea trout () with respect to their hypo-osmoregulatory ability over a simulated migration to seawater and their clinical and physiological response to salmon louse () infection in seawater and over a simulated pre-mature return to freshwater. For this purpose, 2-year-old hatchery-reared male and female brown trout (F1 offspring of wild caught anadromous fish) were infected with salmon lice and measured for changes in plasma ions, glucose, lactate and osmolality and relative heart, liver and gonad sizes during a simulated seawater migration and thereafter a premature return to freshwater after 4 weeks in seawater (pre-adult louse). Un-infected trout served as control.

View Article and Find Full Text PDF

The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on stress, growth and the expression of immune and wound healing transcripts in the skin of Atlantic salmon (Salmo salar) was investigated. Lice infection success and survival were similar at the chalimus and preadult stage in the low and high dose group, but infection success and survival were significantly lower in the high than in the low dose group at the adult stage. The expression of investigated transcripts was not correlated to lice intensities, but several of them were significantly differently expressed locally in the skin at the site of lice attachment in infected fish compared to controls.

View Article and Find Full Text PDF

In this study, the effect of temperature on Atlantic salmon (Salmo salar) stress and immune response to the ectoparasitic salmon lice (Lepeophtheirus salmonis) was investigated. We found that infestation affected the expression of several immune and wound healing transcripts in the skin especially at the site of lice attachment compared to un-infested control fish. Moreover, expression patterns in the skin of infested fish suggest that host immune responses towards salmon lice are impaired at low temperatures.

View Article and Find Full Text PDF

The salmon louse, is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins.

View Article and Find Full Text PDF

Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish.

View Article and Find Full Text PDF

Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fish. Atlantic salmon (Salmo salar) exhibit only a limited and ineffective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses.

View Article and Find Full Text PDF

Monitoring of planktonic salmon louse (Lepeophtheirus salmonis salmonis) abundance and parameterization of key life-history traits has been hindered by labour-intensive and error-prone quantification using traditional light microscopy. Fluorescence illumination has been proposed as a means of improving visualization, but prior to this study adequate investigation of the relevant fluorescence profiles and measurement conditions has not been undertaken. We investigated the fluorescence profiles of L.

View Article and Find Full Text PDF

Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate -acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut.

View Article and Find Full Text PDF

Surveillance and diagnosis of parasitic Bonamia ostreae infections in flat oysters (Ostrea edulis) are prerequisites for protection and management of wild populations. In addition, reliable and non-lethal detection methods are required for selection of healthy brood oysters in aquaculture productions. Here we present a non-lethal diagnostic technique based on environmental DNA (eDNA) from water samples and demonstrate applications in laboratory trials.

View Article and Find Full Text PDF

The salmon louse (Lepeophtheirus salmonis) is an ecologically and economically important parasite of salmonid fish. Temperature is a strong influencer of biological processes in salmon lice, with development rate increased at higher temperatures. The successful attachment of lice onto a host is also predicted to be influenced by temperature; however, the correlation of temperature with parasite survival is unknown.

View Article and Find Full Text PDF

Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway.

View Article and Find Full Text PDF

The marine crustacean Lepeophtheirus salmonis (salmon louse) is a common ectoparasite of wild and farmed salmonids. The parasite has a complex ontogeny comprising eight instars. The planktonic copepodid stage settles on host skin and pass through five instars to reach the adult stage.

View Article and Find Full Text PDF

The salmon louse (Lepeophtheirus salmonis) is an ectoparasite infecting Atlantic salmon (Salmo salar), which causes substantial problems to the salmon aquaculture and threatens wild salmon. Chitin synthesis inhibitors (CSIs) are used to control L. salmonis in aquaculture.

View Article and Find Full Text PDF

Animals with exoskeleton need to molt to grow and develop. Molting is well described in some arthropods especially insects. Chitin is a polymer of N-acetylglucosamine, and one of the major components of the exoskeleton of arthropods.

View Article and Find Full Text PDF

The Salmon louse (Lepeophtheirus salmonis) is a marine ectoparasite of salmonid fish in the Northern Hemisphere and considered as a major challenge in aquaculture and a threat to wild populations of salmonids. Adult female lice produce a large number of lipid-rich eggs, however, the mechanism of maternal lipid transport into developing eggs during salmon louse reproduction has not been described. In the present study, a full-length L.

View Article and Find Full Text PDF

The salmon louse Lepeophtheirus salmonis (Copepods, Caligida) is a marine ectoparasite infecting salmonid fishes in the northern hemisphere. At present, salmon lice infections are the most severe disease problem in the salmon farming industry causing significant economic losses. Due to development of resistance towards available chemotherapeutants, it is clear that new chemotherapeutants or non-chemical control methods are essential to manage the parasite in the future.

View Article and Find Full Text PDF

The salmon louse is a marine ectoparasitic copepod on salmonid fishes. Its lifecycle consists of eight developmental stages, each separated by a molt. In crustaceans and insects, molting and reproduction is controlled by circulating steroid hormones such as 20-hydroxyecdysone.

View Article and Find Full Text PDF

The salmon louse, Lepeophtheirus salmonis (Copepoda: Caligidae), is currently the most significant pathogen affecting the salmon farming industry in the Northern Hemisphere. Exocrine glands of blood-feeding parasites are believed to be important for the host-parasite interaction, but also in the production of substances for integument lubrication and antifouling. In L.

View Article and Find Full Text PDF

The salmon louse, , is an endemic ectoparasite on salmonid fish that is challenging for the salmon farming industry and wild fish. Salmon lice produce high numbers of offspring, necessitating sequestration of large amounts of lipids into growing oocytes as a major energy source for larvae, most probably mediated by lipoproteins. The microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins.

View Article and Find Full Text PDF

Heme peroxidases are the most abundant type of peroxidase catalyzing a HO-dependent oxidation of a wide variety of substrates. They are involved in numerous processes like the innate immune response, hormone and prostaglandin synthesis and crosslinking of proteins within extracellular matrixes (ECM) as well as molecules within the cuticle and chorion of arthropods and nematodes. In the present study, a Lepeophtheirus salmonis heme peroxidase (LsHPX) 1 was characterized.

View Article and Find Full Text PDF

Exocrine glands of blood-feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified.

View Article and Find Full Text PDF

The function of the ecdysone receptor (EcR) during development and molting has been thoroughly investigated in some arthropods such as insects but rarely in crustacean copepods such as the salmon louse Lepeophtheirus salmonis (L. salmonis) (Copepoda, Caligidae). The salmon louse is an ectoparasite on Atlantic salmon that has major economical impact in aquaculture due to the cost of medical treatment methods to remove lice from the fish.

View Article and Find Full Text PDF

The salmon louse (Lepeophtheirus salmonis) is a major parasite of salmonid fish in the marine environment. The interaction between the parasite and the host upon infection is not completely understood. However, it is clear that the parasite influences the host and its immune system.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5mn23l69q5r4tc501qto6d6s08lk0p4i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once