Publications by authors named "Susrut Akkineni"

Biological evolution has led to precise and dynamic nanostructures that reconfigure in response to pH and other environmental conditions. However, designing micrometre-scale protein nanostructures that are environmentally responsive remains a challenge. Here we describe the de novo design of pH-responsive protein filaments built from subunits containing six or nine buried histidine residues that assemble into micrometre-scale, well-ordered fibres at neutral pH.

View Article and Find Full Text PDF

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface.

View Article and Find Full Text PDF

Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations.

View Article and Find Full Text PDF

Biocatalysis is a useful strategy for sustainable green synthesis of fine chemicals due to its high catalytic rate, reaction specificity, and operation under ambient conditions. Addressable immobilization of enzymes onto solid supports for one-pot multistep biocatalysis, however, remains a major challenge. In natural pathways, enzymes are spatially coupled to prevent side reactions, eradicate inhibitory products, and channel metabolites sequentially from one enzyme to another.

View Article and Find Full Text PDF