Background: beta-catenin is a key mediator of the canonical Wnt pathway as it associates with members of the T-cell factor (TCF) family at Wnt-responsive promoters to drive the transcription of Wnt target genes. Recently, we showed that Rac1 GTPase synergizes with beta-catenin to increase the activity of a TCF-responsive reporter. This synergy was dependent on the nuclear presence of Rac1, since inhibition of its nuclear localization effectively abolished the stimulatory effect of Rac1 on TCF-responsive reporter activity.
View Article and Find Full Text PDFThe Rac1 GTPase contains a functional nuclear localization signal (NLS) and destruction box sequence in the C-terminal polybasic region. It has been postulated that these two regulatory sequences may function together, enabling Rac1 to participate in nuclear signaling pathways that ultimately target it for degradation. We have previously shown that the NLS activity of Rac1 and the Rac1b splice variant is essential for Wnt pathway activation.
View Article and Find Full Text PDFRac1b is a tumor-specific splice variant of the Rac1 GTPase that displays limited functional similarities to Rac1. We have shown previously a novel cross-talk between Rac1 and beta-catenin, which induces canonical Wnt pathway activation in colorectal cancer cells. This prompted us to investigate if Rac1b, frequently overexpressed in colon tumors, contributes to Wnt pathway dysregulation.
View Article and Find Full Text PDF