Publications by authors named "Susmit Kumar"

MnAs is an interesting material due to its magnetocaloric properties, which can be utilized in magnetic refrigeration. However, despite major efforts, its magnetic refrigeration performances in the substituted forms could not be improved compared to the parent MnAs phase. Both small and big box modeling of the pair distribution function of MnAs for the local structure description and powder X-ray diffraction for the average structure reveal an inherent local orthorhombic distortion in the hexagonal structure of MnAs.

View Article and Find Full Text PDF

The oxychloride SrTeFeOCl is obtained by high-temperature solid-state synthesis under inert conditions in closed reaction vessels. The compound crystallizes in a novel monoclinic crystal structure that is described in the space group 12/1 (No. 14).

View Article and Find Full Text PDF

Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution.

View Article and Find Full Text PDF

The ligand exchange reaction with pyridine is the standard procedure for the integration of colloidal semiconductor nanocrystals (NCs) in photovoltaic devices; however, for large sized and irregularly shaped branched NCs, such as CdSe@CdTe tetrapods, this procedure can lead to a considerable waste of materials and the aggregation of NCs in the colloidal solution, therefore resulting in the formation of an inhomogeneous film and low device performances. Here, we report on alternative post-deposition treatments with carboxylic acids on films of CdSe@CdTe tetrapod shaped NCs. This approach guarantees the removal of the insulating surfactant, necessary to obtain good charge transport among NCs, while preserving the film integrity.

View Article and Find Full Text PDF

We report on the fabrication and single electron tunneling behaviour of large scale arrays of nanogap electrodes bridged by bisferrocene-gold nanoparticle hybrids (BFc-AuNP). Coulomb staircase was observed in the low temperature current-voltage curves measured on the junctions with asymmetric tunnel barriers. On the other hand, junctions with symmetric tunneling barrier exhibited mere nonlinear current voltage characteristics without discrete staircase.

View Article and Find Full Text PDF

Quantum-dot Cellular Automata (QCA) exploit quantum confinement, tunneling and electrostatic interaction for transistorless digital computing. Implementation at the molecular scale requires carefully tailored units which must obey several structural and functional constraints, ranging from the capability to confine charge efficiently on different 'quantum-dot centers'-in order to sharply encode the Boolean states-up to the possibility of having their state blanked out upon application of an external signal. In addition, the molecular units must preserve their geometry in the solid state, to interact electrostatically in a controlled way.

View Article and Find Full Text PDF