Am J Respir Crit Care Med
March 2021
Background: Acute respiratory distress syndrome (ARDS) patients may present impaired in lung function and structure after hospital discharge that may be related to mechanical ventilation strategy. The aim of this study was to evaluate the association between functional and structural lung impairment, N-terminal-peptide type III procollagen (NT-PCP-III) and driving pressure during protective mechanical ventilation. It was a secondary analysis of data from randomized controlled trial that included patients with moderate/severe ARDS with at least one follow-up visit performed.
View Article and Find Full Text PDFObjective: The aims of this study were to investigate the ability of contrast-enhanced dual-energy computed tomography (DECT) for assessing regional perfusion in a model of acute lung injury, using dynamic first-pass perfusion CT (DynCT) as the criterion standard and to evaluate if changes in lung perfusion caused by prone ventilation are similarly demonstrated by DECT and DynCT.
Methods: This was an institutional review board-approved study, compliant with guidelines for humane care of laboratory animals. A ventilator-induced lung injury protocol was applied to 6 landrace pigs.
Am J Respir Crit Care Med
April 2018
Rationale: Esophageal manometry is the clinically available method to estimate pleural pressure, thus enabling calculation of transpulmonary pressure (Pl). However, many concerns make it uncertain in which lung region esophageal manometry reflects local Pl.
Objectives: To determine the accuracy of esophageal pressure (Pes) and in which regions esophageal manometry reflects pleural pressure (Ppl) and Pl; to assess whether lung stress in nondependent regions can be estimated at end-inspiration from Pl.
Am J Respir Crit Care Med
May 2018
Rationale: In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g.
View Article and Find Full Text PDFPLoS One
November 2017
Background And Aims: To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT) during moderately-high-frequency positive pressure ventilation (MHFPPV) delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS).
Methods: Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed.
Objectives: Atelectasis develops in critically ill obese patients when undergoing mechanical ventilation due to increased pleural pressure. The current study aimed to determine the relationship between transpulmonary pressure, lung mechanics, and lung morphology and to quantify the benefits of a decremental positive end-expiratory pressure trial preceded by a recruitment maneuver.
Design: Prospective, crossover, nonrandomized interventional study.
Rationale: Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort.
Objectives: To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation.
Objectives: We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury.
View Article and Find Full Text PDFBackground: The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV).
Methods: This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation.
Am J Respir Crit Care Med
December 2013
Rationale: In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical ventilation.
Objectives: To test the hypotheses that in injured lungs negative P(pl) generated by diaphragm contraction has localized effects (in dependent regions) that are not uniformly transmitted, and that such localized changes in P(pl) cause pendelluft.
Parte superior do formulário Digite um texto ou endereço de um site ou traduza um documento. The aim of this study is to evaluate the histological changes in lung parenchyma of pigs affected by interstitial lung disease induced after the infusion of bone marrow mononuclear cells (BMMCs). Ten female swines were submitted to pulmonary fibrosis induced by a single dose of intratracheal bleomicine sulfate.
View Article and Find Full Text PDFObjective: To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system.
Design And Setting: Experimental study.
Subjects: Twenty-seven male New Zealand rabbits.
Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time.
View Article and Find Full Text PDF