ERK1/2 inhibitors have attracted special attention concerning the ability of circumventing cases of innate or log-term acquired resistance to RAF and MEK kinase inhibitors. Based on the 4-aminoquinazoline pharmacophore of kinases, herein we describe the synthesis of 4-aminoquinazoline derivatives bearing a 1,2,3-triazole stable core to bridge different aromatic and heterocyclic rings using copper-catalysed azide-alkyne cycloaddition reaction (CuAAC) as a Click Chemistry strategy. The initial screening of twelve derivatives in tumoral cells (CAL-27, HN13, HGC-27, and BT-20) revealed that the most active in BT-20 cells (25a, IC 24.
View Article and Find Full Text PDFHuman T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10-20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP).
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors.
View Article and Find Full Text PDFO-GlcNAcylation or O-GlcNAc modification is a post-translational modification of several proteins responsible for fundamental cellular processes. Dysregulation of the O-GlcNAc pathway has been linked to the etiology of several diseases such as neurodegenerative and cardiovascular diseases, type 2 diabetes and cancer. O-GlcNAcase (OGA) catalyzes the removal of O-GlcNAc from the modified proteins and several carbohydrate-based OGA inhibitors have been synthesized to understand the role of O-GlcNAc-modified proteins in physiological and pathological conditions.
View Article and Find Full Text PDFCarbohydr Res
June 2016
Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils.
View Article and Find Full Text PDF