Publications by authors named "Sushovita Mukherjee"

Tunneled central venous catheters (TCVCs) are colonized by Gram-positive organisms and form biofilm. Lipoteichoic acid (LTA) is a Gram-positive cell wall component that can be measured in serum. The purpose of this pilot study was to characterize LTA concentrations in hemodialysis (HD) patients with TCVCs compared to other access types and to evaluate biofilm morphology and microbiology in TCVCs removed by clinical decision.

View Article and Find Full Text PDF

Apoptosis of virus-infected cells is an effective antiviral mechanism in addition to interferon induction to establish antiviral state to restrict virus spread. The interferon-inducible 2'-5' oligoadenylate synthetase/RNase L pathway results in activation of RNase L in response to double stranded RNA and cleaves diverse RNA substrates to amplify interferon induction and promote apoptosis. Here we show that RNase L induces expression of Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1 (DRAK1), a member of the death-associated protein kinase family and interferon-signaling pathway is required for induction.

View Article and Find Full Text PDF

Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types.

View Article and Find Full Text PDF

Chronic inflammation of the prostate contributes to the increased risk of prostate cancer. Microbial pathogens in the prostate cause inflammation that leads to prostatitis and proliferative inflammatory atrophy frequently associated with the development of prostate cancer. Bacterial lipopolysaccharides and DNA mediate immune responses by engaging Toll-like receptor (TLR) 4 and 9, respectively.

View Article and Find Full Text PDF