Publications by authors named "Sushmita Mitra"

Diabetic Retinopathy (DR) is a progressive chronic eye disease that leads to irreversible blindness. Detection of DR at an early stage of the disease is crucial and requires proper detection of minute DR pathologies. A novel Deeply-Supervised Multiscale Attention U-Net (Mult-Attn-U-Net) is proposed for segmentation of different DR pathologies viz.

View Article and Find Full Text PDF

A state-of-the-art interdisciplinary survey on multi-modal radiogenomic approaches is presented involving applications to the diagnosis and personalized management of gliomas a common kind of brain tumors through noninvasive imaging integrated with genomic information. It encompasses mining tumor radioimages employing deep learning for the automated extraction of relevant features from the segmented volume of interest (VOI). Gene expression values from surgically extracted tumor tissues are often simultaneously analyzed to determine patient specific features.

View Article and Find Full Text PDF

A novel deep learning based model called Multi-Planar Spatial Convolutional Neural Network (MPS-CNN) is proposed for effective, automated segmentation of different sub-regions . peritumoral edema (), necrotic core (), enhancing and non-enhancing tumor core (/), from multi-modal MR images of the brain. An encoder-decoder type CNN model is designed for pixel-wise segmentation of the tumor along three anatomical planes (axial, sagittal, and coronal) at the slice level.

View Article and Find Full Text PDF

A novel similarity-based feature selection algorithm is developed, using the concept of distance correlation. A feature subset is selected in terms of this similarity measure between pairs of features, without assuming any underlying distribution of the data. The pair-wise similarity is then employed, in a message passing framework, to select a set of exemplars features involving minimum redundancy and reduced parameter tuning.

View Article and Find Full Text PDF

The automatic computerized detection of regions of interest (ROI) is an important step in the process of medical image processing and analysis. The reasons are many, and include an increasing amount of available medical imaging data, existence of inter-observer and inter-scanner variability, and to improve the accuracy in automatic detection in order to assist doctors in diagnosing faster and on time. A novel algorithm, based on visual saliency, is developed here for the identification of tumor regions from MR images of the brain.

View Article and Find Full Text PDF

Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation.

View Article and Find Full Text PDF

This paper presents a simple and novel curve fitting approach for generating simple gene regulatory subnetworks from time series gene expression data. Microarray experiments simultaneously generate massive data sets and help immensely in the large-scale study of gene expression patterns. Initial biclustering reduces the search space in the high-dimensional microarray data.

View Article and Find Full Text PDF
Genetic networks and soft computing.

IEEE/ACM Trans Comput Biol Bioinform

February 2011

The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets.

View Article and Find Full Text PDF

In this study, we introduce a novel clustering architecture, in which several subsets of patterns can be processed together with an objective of finding a common structure. The structure revealed at the global level is determined by exchanging prototypes of the subsets of data and by moving prototypes of the corresponding clusters toward each other. Thereby, the required communication links are established at the level of cluster prototypes and partition matrices, without hampering the security concerns.

View Article and Find Full Text PDF

Biological sequences and structures have been modelled using various machine learning techniques and abstract mathematical concepts. This article surveys methods using Hidden Markov Model and functional grammars for this purpose. We provide a formal introduction to Hidden Markov Model and grammars, stressing on a comprehensive mathematical description of the methods and their natural continuity.

View Article and Find Full Text PDF