Publications by authors named "Sushil Nagar"

Lignocellulosic biomass (LCB) comprising of wheat bran, coconut husk, rice husk, cereals straw, and other hardwood and softwoods is a good source for the production of xylooligosaccharides (XOS) (prebiotic). XOS produced are nondigestible carbohydrates being stable under stomach pH and digestive enzymes so they can be easily delivered to the intestine in native form, thus stimulating the growth of probiotics. Here we review about the raw material, production, purification, and application of XOS with health benefits.

View Article and Find Full Text PDF

Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads.

View Article and Find Full Text PDF

In the present investigation, xylooligosaccharides were produced from wheat bran and wheat bran extracted xylan through enzymatic hydrolysis using xylanase from novel KS1. Xylooligosaccharides/reducing sugars production from wheat bran was found maximum (374 mg/g) when 4.0% of wheat bran was treated with 375 units (IU/mL) of KS1 xylanase at pH 6.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found significant variability in nutrient levels among the genotypes, with certain types showing higher amounts of essential minerals like iron and zinc.
  • * The results highlight the potential for developing new oat varieties and food products that better meet nutritional needs, particularly those with low levels of phytic acid and higher protein or β-glucan content.
View Article and Find Full Text PDF

This study was conducted to evaluate the efficacy of purified free and immobilized xylanase in enrichment of fruit juices. Extracellular xylanase produced from Bacillus pumilus VLK-1 was purified to apparent homogeneity by 15.4-fold with 88.

View Article and Find Full Text PDF

This study was aimed at enhancing the production of xylanase from an alkaliphilic Bacillus pumilus VLK-1 in submerged fermentation using wheat bran, a cheap and abundantly available agro-residue, through process optimization and to monitor the effect of temperature shift operation on it. The potential of xylanase in saccharification of wheat straw was also investigated. The results showed that optimization of the fermentation process by one variable approach increased the enzyme yield from 402 to 4,986 IU/ml.

View Article and Find Full Text PDF

Polymethyl methacrylate (PMMA) nanofiber membrane (NFM) was synthesized by an electrospinning technique. These membranes were utilized as a support for immobilization of xylanase enzyme to study its pH stability, thermal stability, and reusability. The morphology of aligned NFM was studied by optical microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

The potential of extracellular alkali stable and thermo tolerant xylanase produced by Bacilluspumilus SV-85S through solid state fermentation was investigated in pulp bleaching in association with conventional bleaching using chlorine and chlorine dioxide. The biobleaching of kraft pulp with xylanase was the most effective at an enzyme dose of 10 IU/g oven dried pulp, pH 9.0 and 120 min incubation at 55 °C.

View Article and Find Full Text PDF

The fermentation conditions were optimized for hyper production of xylanase from Bacillus pumilus SV-205. The bacterium secretes high levels (7382.7±1200 IU/mL) of cellulase-free xylanase using wheat bran led to 21.

View Article and Find Full Text PDF

High level production of an extracellular cellulase-poor alkali stable xylanase has been conceded from newly isolated Bacillus pumilus SV-85S under solid state fermentation using wheat bran as a substrate. Optimization of the fermentation conditions enhanced the enzyme production to 73,000 ± 1,000 IU/g dry substrate, which was 13.8-fold higher than unoptimized conditions (5,300 IU/g).

View Article and Find Full Text PDF

This paper reports the production of a cellulase-free and alkali-stable xylanase in high titre from a newly isolated Bacillus pumilus SV-85S using cheap and easily available agro-residue wheat bran. Optimization of fermentation conditions enhanced the enzyme production to 2995.20 +/- 200.

View Article and Find Full Text PDF