Lipid nanoparticles (LNPs) have great potential to enable inhaled delivery of mRNA to treat pulmonary diseases. However, this potential has been limited by the challenge of nebulizing the LNPs. Nebulization of LNPs can cause LNPs to aggregate and release encapsulated mRNA, limiting their delivery efficacy.
View Article and Find Full Text PDFPhotoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation.
View Article and Find Full Text PDFExosomes are 30-200 nm sized extracellular vesicles that are increasingly recognized as potential drug delivery vehicles. However, exogenous exosomes are rapidly cleared from the blood upon intravenous delivery, which limits their therapeutic potential. Here, we report bioactive exosome-tethered poly(ethylene oxide)-based hydrogels for the localized delivery of therapeutic exosomes.
View Article and Find Full Text PDFSodium pyruvate, a natural intermediate produced during cellular metabolism, is commonly used in buffer solutions and media for biochemical applications. Here we show the use of sodium pyruvate (SP) as a reducing agent in a biocompatible aqueous photoinduced azide-alkyne cycloaddition (CuAAC) reaction. This copper(I)-catalyzed 1,3-dipolar cycloaddition is triggered by SP under UV light irradiation, exhibits oxygen tolerance and temporal control, and provides a convenient alternative to current CuAAC systems, particularly for biomolecular conjugations.
View Article and Find Full Text PDFWebinar series are helping our community of polymer scientists to stay engaged and connected, despite the cancellation of in-person meetings and the periodic closure of laboratories to contain the spread of the coronavirus pandemic. The sustainable and inclusive character of these virtual events make them valuable learning and networking opportunities. As organizers of the Matyjaszewski Lab Webinar Series, we share herein our experience, highlighting the benefits of virtual meetings and providing a short guide for webinar organizers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Exosomes are emerging as ideal drug delivery vehicles due to their biological origin and ability to transfer cargo between cells. However, rapid clearance of exogenous exosomes from the circulation as well as aggregation of exosomes and shedding of surface proteins during storage limit their clinical translation. Here, we demonstrate highly controlled and reversible functionalization of exosome surfaces with well-defined polymers that modulate the exosome's physiochemical and pharmacokinetic properties.
View Article and Find Full Text PDFProteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures.
View Article and Find Full Text PDFExosomes show potential as ideal vehicles for drug delivery because of their natural role in transferring biological cargo between cells. However, current methods to engineer exosomes without negatively impacting their function remain challenging. Manipulating exosome-secreting cells is complex and time-consuming, while direct functionalization of exosome surface proteins suffers from low specificity and low efficiency.
View Article and Find Full Text PDFAn aqueous electrochemically mediated atom transfer radical polymerization (eATRP) was performed in a small volume solution (75 μL) deposited on a screen-printed electrode (SPE). The reaction was open to air, thanks to the use of glucose oxidase (GOx) as an oxygen scavenger. Well-defined poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA), and corresponding DNA-polymer biohybrids were synthesized by the small-volume eATRP at room temperature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2018
Atom transfer radical polymerization (ATRP) can be carried out in a flask completely open to air using a biocatalytic system composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) with an active copper catalyst complex. Nanomolar concentrations of the enzymes and ppm amounts of Cu provided excellent control over the polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA ), generating polymers with high molecular weight (M >70 000) and low dispersities (1.13≤Đ≤1.
View Article and Find Full Text PDFA new procedure for ultrasonication-induced atom transfer radical polymerization (sono-ATRP) in aqueous media was developed. Polymerizations of oligo(ethylene oxide) methyl ether methacrylate (OEOMA) and 2-hydroxyethyl acrylate (HEA) in water were successfully carried out in the presence of ppm amounts of CuBr catalyst and tris(2-pyridylmethyl)amine ligand when exposed to ultrasonication (40 kHz, 110 W) at room temperature. Aqueous sono-ATRP enabled polymerization of water-soluble monomers with excellent control over the molecular weight, dispersity, and high retention of chain-end functionality.
View Article and Find Full Text PDFA rapid blue-light-induced atom transfer radical polymerization (ATRP) was conducted in a biologically friendly environment. Well-controlled polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA) was successfully performed in aqueous media (1X PBS) under irradiation by blue LED strips. With 10.
View Article and Find Full Text PDFA DNA synthesizer was successfully employed for preparation of well-defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well-defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators.
View Article and Find Full Text PDFSmall drug molecules and other important metabolites are delivered via a suitable carrier protein-mediated transport through a specific receptor. The process is highly coordinated and associated with complexation induced properties of deliverable molecules. To get a molecular insight, in this report, we tried to mimic the delivery process to know how the carrier protein relocates the drug molecule from the macrocyclic host cavity to its binding pocket and how the electronic and the chemical properties of the guest get altered.
View Article and Find Full Text PDF