Publications by authors named "Sushil K Chaturvedi"

Identifying a congenially targeted production environment and understanding the effects of genotype by environmental interactions on the adaption of chickpea genotypes is essential for achieving an optimal yield stability. Different models like additive main effect and multiplicative interactions (AMMI 1, AMM2), weighted average absolute scores of BLUPs (WAASB), and genotype plus genotype-environment (GGE) interactions were used to understand their suitability in the precise estimation of variance and their interaction. Our experiment used genotypes that represent the West Asia-North Africa (WANA) region.

View Article and Find Full Text PDF

Post flowering stalk rot (PFSR) of maize caused by the species complex is a serious threat to maize production worldwide. The identification of species causing PFSR based on morphology traditionally relies on a small set of phenomic characteristics with only minor morphological variations among distinct species. Seventy-one isolates were collected from 40 sites in five agro-climatic zones of India to assess the diversity of spp.

View Article and Find Full Text PDF

Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform.

View Article and Find Full Text PDF

Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population.

View Article and Find Full Text PDF

The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea ( L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India.

View Article and Find Full Text PDF

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding.

View Article and Find Full Text PDF

Unravelling the genetic architecture underlying yield components and agronomic traits is important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population, developed from ICC 4958 and DCP 92-3 cross, was used for constructing linkage map and QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®CicerSNP array, which enabled the development of a high-density genetic map consisting of 3,818 SNP markers and spanning a distance of 1064.

View Article and Find Full Text PDF

With an aim of enhancing drought tolerance using a marker-assisted backcrossing (MABC) approach, we introgressed the "QTL-hotspot" region from ICC 4958 accession that harbors quantitative trait loci (QTLs) for several drought-tolerance related traits into three elite Indian chickpea (Cicer arietinum L.) cultivars: Pusa 372, Pusa 362, and DCP 92-3. Of eight simple sequence repeat (SSR) markers in the QTL-hotspot region, two to three polymorphic markers were used for foreground selection with respective cross-combinations.

View Article and Find Full Text PDF

Background: Chickpea (Cicer arietinum L.) is the second most widely grown pulse and drought (limiting water) is one of the major constraints leading to about 40-50% yield losses annually. Dehydration responsive element binding proteins (DREBs) are important plant transcription factors that regulate the expression of many stress-inducible genes and play a critical role in improving the abiotic stress tolerance.

View Article and Find Full Text PDF

Integration of genomic technologies with breeding efforts have been used in recent years for chickpea improvement. Modern breeding along with low cost genotyping platforms have potential to further accelerate chickpea improvement efforts. The implementation of novel breeding technologies is expected to contribute substantial improvements in crop productivity.

View Article and Find Full Text PDF

Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP-GL).

View Article and Find Full Text PDF

We report a map of 4.97 million single-nucleotide polymorphisms of the chickpea from whole-genome resequencing of 429 lines sampled from 45 countries. We identified 122 candidate regions with 204 genes under selection during chickpea breeding.

View Article and Find Full Text PDF

Chickpea ( L.), a cool-season legume, is increasingly affected by heat-stress at reproductive stage due to changes in global climatic conditions and cropping systems. Identifying quantitative trait loci (QTLs) for heat tolerance may facilitate breeding for heat tolerant varieties.

View Article and Find Full Text PDF

Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( H.) wreaks havoc to chickpea crop affecting production.

View Article and Find Full Text PDF

Chickpea ( L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries.

View Article and Find Full Text PDF

In order to understand the impact of breeding on genetic diversity and gain insights into temporal trends in diversity in chickpea, a set of 100 chickpea varieties released in 14 countries between 1948 and 2012 were re-sequenced. For analysis, the re-sequencing data for 29 varieties available from an earlier study was also included. Copy number variations and presence absence variations identified in the present study have potential to drive phenotypic variations for trait improvement.

View Article and Find Full Text PDF

Terminal drought is one of the major constraints in chickpea (Cicer arietinum L.), causing more than 50% production losses. With the objective of accelerating genetic understanding and crop improvement through genomics-assisted breeding, a draft genome sequence has been assembled for the CDC Frontier variety.

View Article and Find Full Text PDF

To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE.

View Article and Find Full Text PDF

Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land.

View Article and Find Full Text PDF