Purpose: Suboptimal ultrasound conspicuity of the brachytherapy applicator can lead to inaccurate image reconstructions of the applicator resulting in decreased tumor control or increased normal tissue dose. This feasibility study aims to improve ultrasound conspicuity of high-dose rate (HDR) brachytherapy needles by modifying the surface of the needles to produce a color Doppler twinkling signature.
Materials And Methods: Surface modifications of standard 17-gauge titanium HDR brachytherapy needles included laser-scribing, application of polymethyl methacrylate (PMMA), and coating with a commercially available echogenic coating.
Recruitment of endothelial cells to cardiovascular device surfaces could solve issues of thrombosis, neointimal hyperplasia, and restenosis. Since current targeting strategies are often nonspecific, new technologies to allow for site-specific cell localization and capture are needed. The development of cytocompatible superparamagnetic iron oxide nanoparticles has allowed for the use of magnetism for cell targeting.
View Article and Find Full Text PDF. To modify off-the-shelf components to build a device for collecting electroencephalography (EEG) from macroelectrodes surrounded by large fluid access ports sampled by an integrated microperfusion system in order to establish a method for sampling brain interstitial fluid (ISF) at the site of stimulation or seizure activity with no bias for molecular size..
View Article and Find Full Text PDFSince its first description 25 years ago, color Doppler twinkling has been a compelling ultrasound feature in diagnosing urinary stones. While the fundamental cause of twinkling remains elusive, the distinctive twinkling signature is diagnostically valuable in clinical practice. It can be inferred that if an entity twinkles, it empirically has certain physical features.
View Article and Find Full Text PDFThe endothelium is a dynamic integrated structure that plays an important role in many physiological functions such as angiogenesis, hemostasis, inflammation, and homeostasis. The endothelium also plays an important role in pathophysiologies such as atherosclerosis, hypertension, and diabetes. Endothelial cells form the inner lining of blood and lymphatic vessels and display heterogeneity in structure and function.
View Article and Find Full Text PDFIn breast radiology, ultrasound detection of biopsy markers or clips for localization purposes is often challenging, especially in the axilla. The purpose of this research was to test the hypothesis that the surface roughness of biopsy clips would elicit a twinkling signature on color Doppler, making them more readily identifiable by ultrasound. Ultrasound color Doppler imaging of 12 biopsy markers was performed and consensus scoring of the degree of twinkling (0 [no twinkling] to 4 [exuberant twinkling]) was obtained for each of the markers.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2019
The purpose of the work presented here was to establish an experimental testing configuration that would generate a bending compression fracture in a laboratory setting. To this end, we designed and fabricated a fixture to accommodate a three level spine segment and to be able to perform mechanical testing by applying an off-centric compressive loading to create a flexion-type motion. Forces and moments occurring during testing were measured with a six-channel load cell.
View Article and Find Full Text PDFCommercially available heart valves have many limitations, such as a lack of remodeling, risk of calcification, and thromboembolic problems. Many state-of-the-art tissue-engineered heart valves (TEHV) rely on recellularization to allow remodeling and transition to mechanical behavior of native tissues. Current in vitro testing is insufficient in characterizing a soon-to-be living valve due to this change in mechanical response; thus, it is imperative to understand the performance of an in situ valve.
View Article and Find Full Text PDFIncomplete endothelialization of intracoronary stents has been associated with stent thrombosis and recurrent symptoms, whereas prolonged use of dual antiplatelet therapy increases bleeding-related adverse events. Facilitated endothelialization has the potential to improve clinical outcomes in patients who are unable to tolerate dual antiplatelet therapy. The objective of this study was to demonstrate the feasibility of magnetic cell capture to rapidly endothelialize intracoronary stents in a large animal model.
View Article and Find Full Text PDFThis protocol describes the method using digital image correlation to estimate cortical strain from high speed video images of the cadaveric femoral surface obtained from mechanical testing. This optical method requires a texture of many contrasting fiduciary marks on a solid white background for accurate tracking of surface deformation as loading is applied to the specimen. Immediately prior to testing, the surface of interest in the camera view is painted with a water-based white primer and allowed to dry for several minutes.
View Article and Find Full Text PDFMechanical testing of femora brings valuable insights into understanding the contribution of clinically-measureable variables such as bone mineral density distribution and geometry on the femoral mechanical properties. Currently, there is no standard protocol for mechanical testing of such geometrically complex bones to measure strength, and stiffness. To address this gap we have developed a protocol to test cadaveric femora to fracture and to measure their biomechanical parameters.
View Article and Find Full Text PDFCadaveric fracture testing is routinely used to understand factors that affect proximal femur strength. Because ex vivo biological tissues are prone to lose their mechanical properties over time, specimen preparation for experimental testing must be performed carefully to obtain reliable results that represent in vivo conditions. For that reason, we designed a protocol and a set of fixtures to prepare the femoral specimens such that their mechanical properties experienced minimal changes.
View Article and Find Full Text PDFEmerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts.
View Article and Find Full Text PDFStent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing.
View Article and Find Full Text PDFTargeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields.
View Article and Find Full Text PDFRapid endothelialization of cardiovascular stents is needed to reduce stent thrombosis and to avoid anti-platelet therapy which can reduce bleeding risk. The feasibility of using magnetic forces to capture and retain endothelial outgrowth cells (EOC) labeled with super paramagnetic iron oxide nanoparticles (SPION) has been shown previously. But this technique requires the development of a mechanically functional stent from a magnetic and biocompatible material followed by in-vitro and in-vivo testing to prove rapid endothelialization.
View Article and Find Full Text PDFThe aim of the present study was to compare proximal femur strength and stiffness obtained experimentally with estimations from Finite Element Analysis (FEA) models derived from Quantitative Computed Tomography (QCT) scans acquired at two different scanner settings. QCT/FEA models could potentially aid in diagnosis and treatment of osteoporosis but several drawbacks still limit their predictive ability. One potential reason is that the models are still sensitive to scanner settings which could lead to changes in assigned material properties, thus limiting their results accuracy and clinical effectiveness.
View Article and Find Full Text PDFRapid healing of vascular stents is important for avoiding complications associated with stent thrombosis, restenosis, and bleeding related to antiplatelet drugs. Magnetic forces can be used to capture iron-labeled endothelial cells immediately following stent implantation, thereby promoting healing. This strategy requires the development of a magnetic stent that is biocompatible and functional.
View Article and Find Full Text PDFWe present a computational fluid dynamics (CFD) analysis of the hemodynamic environment of an anterior communicating artery that spontaneously ruptured immediately following three-dimensional rotational angiography. Subsequent digital subtraction angiography allowed for the localization of the point of rupture within the aneurysm dome. CFD analysis demonstrated a concentrated jet that impinged directly at the site of rupture.
View Article and Find Full Text PDFWe present a computational fluid dynamics (CFD) analysis of the hemodynamic environment of an anterior communicating artery that spontaneously ruptured immediately following three-dimensional rotational angiography. Subsequent digital subtraction angiography allowed for the localization of the point of rupture within the aneurysm dome. CFD analysis demonstrated a concentrated jet that impinged directly at the site of rupture.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) has become a cutting-edge tool for investigating hemodynamic dysfunctions in the body. It has the potential to help physicians quantify in more detail the phenomena difficult to capture with in vivo imaging techniques. CFD simulations in anatomically realistic geometries pose challenges in generating accurate solutions due to the grid distortion that may occur when the grid is aligned with complex geometries.
View Article and Find Full Text PDF