Publications by authors named "Susheel Kalia"

Titanium dioxide nanoparticles (TiO NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance.

View Article and Find Full Text PDF

The current research includes the synthesis, improvement of NaCMC-cl-DMAA/AAc hydrogel and in-situ controlled release of gentamicin within various pH environments. The prepared hydrogel was then modified using boron nitride nanosheets aiming to enhancement in the adsorption rate. The prepared hydrogels were investigated by FTIR, XRD, FESEM, TGA/DSC, swelling and cell viability analysis.

View Article and Find Full Text PDF

The rapid population growth and environmental challenges in agriculture need innovative and sustainable solutions to meet the growing need for food worldwide. Recent nanotechnological advances found its broad applicability in agriculture's protection and post-harvesting. Engineered nanomaterials play a vital role in plant regulation, seed germination, and genetic manipulation.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in nanotechnology are replacing traditional therapies and leading to the creation of cost-effective biosensors that can help manage virus outbreaks, like HCoV-2.
  • The integration of biosensors with nanostructures offers a way to develop ultrasensitive, miniaturized detection methods, which can rapidly identify viral infections.
  • This review outlines various functionalized nanomaterials used for making nanobiosensors, along with their synthesis, advantages, and challenges in the field.
View Article and Find Full Text PDF

This study aims at manufacturing Ce/Ni ions doped Mg nanoferrites by the sol-gel method for the photocatalytic degradation of rhodamine B and crystal violet pollutants under visible natural sunlight. The particle size of synthesized nanoferrites was calculated through XRD, Hall-William plots, and TEM analysis, which perfectly agree with each other. FTIR study investigated the existence of stretching vibrations in M - O (metal-oxygen) complexes at the tetrahedral (A-site) and octahedral sites (B-site).

View Article and Find Full Text PDF

The interference of industrial effluents such as dyes, surfactants, metals, polycyclic aromatic hydrocarbons, and pharmaceutical waste has become a severe global problem for human health due to their carcinogenic, mutagenic, and toxic properties. Ferrites were considered promising photocatalysts for the degradation of organic and inorganic dyes. This study mainly focused on improving the photocatalytic performance of MnFeO nanoferrites via doping of Zn and La ions.

View Article and Find Full Text PDF

In this study, chitosan-crosslinked-poly (alginic acid) nanohydrogel (CN-cl-PL(AA)NHG) was synthesized by co-polymerization method. It was used an effective adsorbent for the exclusion of Cr(VI) metal ion from aqueous medium. The synthesized nanohydrogel was characterized by FTIR, SEM and TEM.

View Article and Find Full Text PDF

The construction of dimethylenebis(eicosyldimethylammonium bromide) surfactant-directed gold nanoparticles (NPs) has been accomplished via a one-pot thermal reduction of HAuCl4 with trisodium citrate. The effect of cationic twin-tail surfactants, dimethylenebis(hexadecyldimethylammonium bromide) (16-2-16), dimethylenebis(octadecyldimethylammonium bromide) (18-2-18) and dimethylenebis(eicosyldimethylammonium bromide) (20-2-20), and their concentrations on shape and size of Au nanoparticles was thoroughly investigated. The UV-Vis spectroscopy and transmission electron microscopy (TEM) results show that longer tail length surfactants act as shape-directing agents promoting diversified morphologies.

View Article and Find Full Text PDF

Conducting hydrogels possessing antibacterial activity were developed using a two-step free-radical aqueous polymerization method to incorporate polyaniline chains into an adsorbent Guar gum/acrylic acid hydrogel network. The material properties of the synthesized samples were characterized using FTIR spectroscopy, thermal analysis and scanning electron microscopy techniques. Conducting hydrogels were tested for antibacterial activities against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria and demonstrated antibacterial activity.

View Article and Find Full Text PDF

Guar gum-polyacrylic acid-polyaniline based biodegradable electrically conductive interpenetrating network (IPN) structures were prepared through a two-step aqueous polymerization. Hexamine and ammonium persulfate (APS) were used as a cross linker-initiator system to crosslink the poly(AA) chains on Guar gum (Ggum) backbone. Optimum reaction conditions for maximum percentage swelling (7470.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: