Eco-friendly self-cleaning coatings have garnered significant attention due to their potential to address environmental concerns while offering remarkable properties. This review explores the dynamic field of such coatings, focusing on their fundamental principles, fabrication techniques, applications, and sustainability. The main findings of this review shed light on the fundamentals of a wetting phenomenon that underpins superhydrophobicity and self-cleaning, revealing how bio-inspired approaches and sustainable materials have enabled the development of sustainable coatings.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
This work is strategically premeditated to study the potential of a herbal medicinal product as a natural bioactive ingredient to generate nanocellulose-based antibacterial architectures. In situ fibrillation of purified cellulose was done in cinnamon extract (E) to obtain microfibrillated cellulose (MFC). To this MFC suspension, carboxylated cellulose nanocrystals (cCNCs) were homogeneously mixed and the viscous gel thus obtained was freeze-dried to obtain lightweight and flexible composite aerogel architectures impregnated with E, namely, MFC/cCNCs.
View Article and Find Full Text PDF