Publications by authors named "Sushant Tripathy"

Systemic delivery of therapeutic nucleic acids to target cells and tissues outside of the liver remains a major challenge. We synthesized a biomimetic high density lipoprotein nanoparticle (HDL NP) for delivery of a cholesteryl modified therapeutic nucleic acid (RNAi) to vascular endothelial cells, a cell type naturally targeted by HDL. HDL NPs adsorb cholesteryl modified oligonucleotides and protect them from nuclease degradation.

View Article and Find Full Text PDF

Purpose Of Review: To summarize the most recent preclinical and clinical advancements in therapeutic nano-oncology.

Recent Findings: First-generation nanotherapies are well tolerated in humans and evidence shows that they are efficacious, while at the same time reducing the burden of side-effects. Most of these therapies are not specifically targeted, but take advantage of enhanced passive accumulation within tumors to preferentially deliver chemotherapies that demonstrate off-target toxicities when administered as free drugs.

View Article and Find Full Text PDF

New therapies that challenge existing paradigms are needed for the treatment of cancer. We report a nanoparticle-enabled therapeutic approach to B-cell lymphoma using synthetic high density lipoprotein nanoparticles (HDL-NPs). HDL-NPs are synthesized using a gold nanoparticle template to control conjugate size and ensure a spherical shape.

View Article and Find Full Text PDF

High density lipoproteins (HDLs) are dynamic natural nanoparticles best known for their role in cholesterol transport and the inverse correlation that exists between blood HDL levels and the risk of developing coronary heart disease. In addition, enhanced HDL-cholesterol uptake has been demonstrated in several human cancers. As such, the use of HDL as a therapeutic and as a vehicle for systemic delivery of drugs and as imaging agents is increasingly important.

View Article and Find Full Text PDF

We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8hhip83o47vbm0m77qkrmt4hkf9iugi5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once