Publications by authors named "Susantha K Ganegamage"

Alzheimer's disease (AD) and Parkinson's disease (PD) are multifactorial, chronic diseases involving neurodegeneration. According to recent studies, it is hypothesized that the intraneuronal and postsynaptic accumulation of misfolded proteins such as α-synuclein (α-syn) and tau, responsible for Lewy bodies (LB) and tangles, respectively, disrupts neuron functions. Considering the co-occurrence of α-syn and tau inclusions in the brains of patients afflicted with subtypes of dementia and LB disorders, the discovery and development of small molecules for the inhibition of α-syn and tau aggregation can be a potentially effective strategy to delay neurodegeneration.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting the elderly population worldwide. In PD, the misfolding of α-synuclein (α-syn) results in the formation of inclusions referred to as Lewy bodies (LB) in midbrain neurons of the substantia nigra and other specific brain localizations, which is associated with neurodegeneration. There are no approved strategies to reduce the formation of LB in the neurons of patients with PD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-β (Aβ) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies.

View Article and Find Full Text PDF

White-light emission from a single organic molecule, known as a single white-light emitter, is a rare phenomenon and desirable property for a class of materials with potential future applications in white lighting. Since -aryl-naphthalimides (NANs) have been shown to follow excited state behavior and unique dual or panchromatic emission through a substituent pattern prescribed via a seesaw photophysical model, this study investigates the substituent effects on the fluorescence emission of structurally related -aryl-phenanthridinones (NAPs) dyes. Following a similar placement prescription of an electron-releasing group (ERG) and electron-withdrawing group (EWG) at the phenanthridinone core and -aryl moiety, we discovered from time-dependent density functional theory (TD-DFT) results that NAPs show a substitution pattern opposite to NANs in order to promote S and higher excited states.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial, chronic neurodegenerative disease characterized by the presence of extracellular β-amyloid (Aβ) plaques, intraneuronal neurofibrillary tangles (NFTs), activated microglial cells, and an inflammatory state (involving reactive oxygen species production) in the brain. NFTs are comprised of misfolded and hyperphosphorylated forms of the microtubule-binding protein tau. Interestingly, the trimeric form of the 2N4R splice isoform of tau has been found to be more toxic than the trimeric 1N4R isoform in neuron precursor cells.

View Article and Find Full Text PDF

Protein misfolding results in a plethora of known diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, transthyretin-related amyloidosis, type 2 diabetes, Lewy body dementia, and spongiform encephalopathy. To provide a diverse portfolio of therapeutic small molecules with the ability to reduce protein misfolding, we evaluated a set of 13 compounds: 4-(benzo[]thiazol-2-yl)aniline (BTA) and its derivatives containing urea (), thiourea (), sulfonamide (), triazole (), and triazine () linker. In addition, we explored small modifications on a very potent antioligomer 5-nitro-1,2-benzothiazol-3-amine (5-NBA) (compounds ).

View Article and Find Full Text PDF

In contrast to A plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (), sulfonylurea (), and sulfonamide () series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays.

View Article and Find Full Text PDF

The peptidic β-lactone proteasome inhibitors (PIs) cystargolides A and B were used to conduct structure-activity relationship (SAR) studies in order to assess their anticancer potential. A total of 24 different analogs were designed, synthesized and evaluated for proteasome inhibition, for cytotoxicity towards several cancer cell lines, and for their ability to enter intact cells. X-ray crystallographic analysis and subunit selectivity was used to determine the specific subunit binding associated with the structural modification of the β-lactone (P), peptidic core, (P and P), and end-cap (P) of our scaffold.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: