Publications by authors named "Susanne Thiery"

Predatory Myxobacteria employ a multilayered predation strategy to kill and lyse soil microorganisms. Aiming to dissect the mechanism of contact-dependent killing of bacteria, we analyze four protein secretion systems in Myxococcus xanthus and investigate the predation of mutant strains on different timescales. We find that a Tad-like and a type 3-like secretion system (Tad and T3SS) fulfill distinct functions during contact-dependent prey killing: the Tad-like system is necessary to induce prey cell death, while the needle-less T3SS initiates prey lysis.

View Article and Find Full Text PDF

Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes.

View Article and Find Full Text PDF

Myxobacteria are ubiquitous in soil environments. They display a complex life cycle: vegetatively growing cells coordinate their motility to form multicellular swarms, which upon starvation aggregate into large fruiting bodies where cells differentiate into spores. In addition to growing as saprophytes, Myxobacteria are predators that actively kill bacteria of other species to consume their biomass.

View Article and Find Full Text PDF

Arabidopsis thaliana mlo3 mutant plants are not affected in pathogen infection phenotypes but-reminiscent of mlo2 mutant plants-exhibit spontaneous callose deposition and signs of early leaf senescence. The family of Mildew resistance Locus O (MLO) proteins is best known for its profound effect on the outcome of powdery mildew infections: when the appropriate MLO protein is absent, the plant is fully resistant to otherwise virulent powdery mildew fungi. However, most members of the MLO protein family remain functionally unexplored.

View Article and Find Full Text PDF