Publications by authors named "Susanne Schultze-Seemann"

Photoimmunotherapy (PIT) combines the specificity of antibodies with the cytotoxicity of light activatable photosensitizers (PS) and is a promising new cancer therapy. We designed and synthesized, in a highly convergent manner, the silicon phthalocyanine dye WB692-CB2, which is novel for being the first light-activatable PS that can be directly conjugated via a maleimide linker to cysteines. In the present study we conjugated WB692-CB2 to a humanized antibody with engineered cysteines in the heavy chains that specifically targets the prostate-specific membrane antigen (PSMA).

View Article and Find Full Text PDF

Background/aim: Breast cancer (BC) is the most common malignant disease worldwide. Localized stages of BC can be successfully treated by surgery. However, local recurrence occurs in about 4-10% of patients, requiring systemic treatments that impair the patients' quality of life and shortens life expectancy.

View Article and Find Full Text PDF

Background/aim: The standard treatment for localized prostate cancer involves surgical removal of the prostate with curative intent. However, when tumor cells persist in the operation site, there is high risk of local recurrence and tumor spread, leading to stressful follow-up treatments, impaired quality of life, and reduced overall survival. This study examined photoimmunotherapy (PIT) as a new treatment option for prostate cancer cells.

View Article and Find Full Text PDF

Background/aim: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer.

View Article and Find Full Text PDF

Treatment of advanced prostate cancer lacks specificity and curative intent. Therefore, the need for new targeted therapeutic approaches is high. In the present study, we generated the new targeted toxin EGF-PE24mutΔREDLK binding to the epidermal growth factor receptor (EGFR) on the surface of prostate cancer cells.

View Article and Find Full Text PDF

Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol.

View Article and Find Full Text PDF

Background/aim: Reports on over-expression of the epidermal growth factor receptor (EGFR) in bladder cancer and its function in tumorigenesis have suggested to target this antigen.

Materials And Methods: We generated the targeted toxin EGF-PE40 consisting of the human epidermal growth factor (EGF) as the binding domain and PE40, a truncated version of Pseudomonas Exotoxin A, as the toxin domain. EGF-PE40 was tested on EGFR-expressing bladder cancer cells in view of binding via flow cytometry, and cytotoxicity via WST viability assay.

View Article and Find Full Text PDF

Upregulation of anti-apoptotic Bcl-2 proteins in advanced prostate cancer leads to therapeutic resistance by prevention of cell death. New therapeutic approaches aim to target the Bcl-2 proteins for the restoration of apoptosis. The immunotoxin hD7-1(VL-VH)-PE40 specifically binds to the prostate specific membrane antigen (PSMA) on prostate cancer cells and inhibits protein biosynthesis.

View Article and Find Full Text PDF

Background: Cisplatin-based chemotherapy is the treatment of choice for advanced bladder cancer. Since many tumor cells show inherent or acquired cisplatin resistance, research is needed to improve the therapeutic efficacy. Since the analgesic methadone is discussed as being a sensitizer for chemotherapy, we tested its effects on the cisplatin treatment of bladder cancer cells.

View Article and Find Full Text PDF

Background: We generated humanized/de-immunized immunotoxins targeting the prostate-specific membrane antigen (PSMA) and tested their cytotoxic activity against prostate cancer cells in vitro.

Materials And Methods: The humanized/de-immunized version of our murine anti-PSMA single-chain antibody fragment (scFv) D7, termed hD7-1(VL-VH), was ligated to the 40-kDa toxin domain of Pseudomonas aeruginosa exotoxin A (PE40), and to the deimmunized 24-kDa toxin domains PE24 or PE24mut. The immunotoxins designated as hD7-1(VL-VH)-PE40, hD7-1(VL-VH)-PE24 and hD7-1(VL-VH)-PE24mut were bacterially expressed and purified by affinity chromatography.

View Article and Find Full Text PDF

In many tumors, including prostate cancer, anti-apoptotic members of the Bcl-2 family are overexpressed and cause cell death resistance, which is a typical hallmark of cancer. Different therapeutic approaches, therefore, aim to restore the death mechanisms for enhanced apoptosis. Our recombinant immunotoxin D7(VL-VH)-PE40 is composed of the scFv D7(VL-VH) against the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer cells and of the cytotoxic domain of the bacterial toxin Pseudomonas Exotoxin A (PE40).

View Article and Find Full Text PDF

Docetaxel (DOC) is used for the first-line treatment of castration resistant prostate cancer (CPRC). However, the therapeutic effects are limited, only about one half of patients respond to the therapy and severe side effects possibly lead to discontinuation of treatment. Therefore, actual research is focused on the development of new DOC-based combination treatments.

View Article and Find Full Text PDF