Publications by authors named "Susanne Sauer"

Lead optimization supported by artificial intelligence (AI)-based generative models has become increasingly important in drug design. Success factors are reagent availability, novelty, and the optimization of multiple properties. Directed fragment-replacement is particularly attractive, as it mimics medicinal chemistry tactics.

View Article and Find Full Text PDF

Molecular generative artificial intelligence is drawing significant attention in the drug design community, with several experimentally validated proof of concepts already published. Nevertheless, generative models are known for sometimes generating unrealistic, unstable, unsynthesizable, or uninteresting structures. This calls for methods to constrain those algorithms to generate structures in drug-like portions of the chemical space.

View Article and Find Full Text PDF

Background: Diabetic metabolism causes changes of the chemical milieu including accumulation of reactive carbonyl species, for example, methylglyoxal (MGO). MGO activates chemosensitive TRPA1 on nociceptors, but the contribution to neuronal pathophysiology causing pain and hyperalgesia in diabetic neuropathy is not fully understood.

Methods: We employed single-nerve-fiber recordings in type 2 diabetes patients with (spDN) and without cutaneous pain (DN) and in streptozotocin-diabetic and healthy mice.

View Article and Find Full Text PDF

Artemisinin and its derivatives are the main therapeutic drugs against Plasmodium protists, the causative agents of malaria. While several putative mechanisms of action have been proposed, the precise molecular targets of these compounds have not been fully elucidated. In addition to their antimalarial properties, artemisinins have been reported to act as anti-tumour agents and certain antinociceptive effects have also been proposed.

View Article and Find Full Text PDF

The identification and optimization of promising lead molecules is essential for drug discovery. Recently, artificial intelligence (AI) based generative methods provided complementary approaches for generating molecules under specific design constraints of relevance in drug design. The goal of our study is to incorporate protein 3D information directly into generative design by flexible docking plus an adapted protein-ligand scoring function, thereby moving towards automated structure-based design.

View Article and Find Full Text PDF

The most widely used formalin test to screen antinociceptive drug candidates is still apostrophized as targeting inflammatory pain, in spite of strong opposing evidence published. In our rat skin-nerve preparation ex vivo, recording from all classes of sensory single-fibers (n = 32), 30 units were transiently excited by formaldehyde concentrations 1-100 mM applied to receptive fields (RFs) for 3 min, C and Aδ-fibers being more sensitive (1-30 mM) than Aβ-fibers. From 30 mM on, ~1% of the concentration usually injected in vivo, all RFs were defunctionalized and conduction in an isolated sciatic nerve preparation was irreversibly blocked.

View Article and Find Full Text PDF

(transient receptor potential cation channel, subfamily C, member 7; 862 amino acids) knockout mice are described showing no clear phenotypic alterations, therefore, the functional relevance of the gene remains unclear. A complementary approach for the functional analysis of a given gene is the examination of individuals harbouring a mutant allele of the gene. In the phenotype-driven Munich ENU mouse mutagenesis project, a high number of phenotypic parameters was used for establishing novel mouse models on the genetic background of C3H inbred mice.

View Article and Find Full Text PDF

Painful diabetic neuropathy occurs in approximately 20% of diabetic patients with underlying pathomechanisms not fully understood. We evaluated the contribution of the Ca3.2 isoform of T-type calcium channel to hyperglycemia-induced changes in cutaneous sensory C-fiber functions and neuropeptide release employing the streptozotocin (STZ) diabetes model in congenic mouse strains including global knockouts (KOs).

View Article and Find Full Text PDF

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca-dependent iCGRP release.

View Article and Find Full Text PDF

The aminosteroid U73122 is frequently used as a phospholipase C (PLC) inhibitor and as such was used to investigate PLC-dependent activation and modulation of the transient receptor potential ankyrin type 1 (TRPA1) receptor channel. However, U73122 was recently shown to activate recombinant TRPA1 directly, albeit this interaction was not further explored. Our aim was to perform a detailed characterization of this agonistic action of U73122 on TRPA1.

View Article and Find Full Text PDF

The endogenous metabolite methylglyoxal (MG) accumulates in diabetic patients with neuropathic pain. Methylglyoxal could be a mediator of diabetes-induced neuropathic pain through TRPA1 activation and sensitization of the voltage-gated sodium channel subtype 1.8.

View Article and Find Full Text PDF

Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release.

View Article and Find Full Text PDF

Loss-of-function mutations in the enzyme 7-dehydrocholesterol reductase are responsible for the Smith-Lemli-Opitz syndrome, in which 7-dehydrocholesterol (7-DHC) levels are markedly increased in the plasma and tissues of patients. This increase in 7-DHC is probably associated with the painful and itchy photosensitivity reported by the majority of patients with Smith-Lemli-Opitz syndrome. To identify the molecular targets involved in the activation and photosensitization of primary afferents by 7-DHC, we focused on TRPA1 and TRPV1, two ion channels expressed in nociceptive nerve endings and previously shown to respond to ultraviolet and visible light under pathophysiological circumstances.

View Article and Find Full Text PDF

Tissue ischemia results in an accumulation of lactate and local or systemic lactic acidosis. In nociceptive sensory neurons, lactate was reported to sensitize or activate the transient receptor potential ion channel TRPA1 and acid-sensing ion channels (ASICs). However, it is unclear how lactate modulates the TRPV1 regarded as the main sensor for acidosis in sensory neurons.

View Article and Find Full Text PDF

Unlabelled: Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid.

View Article and Find Full Text PDF

The formalin test is the most widely used behavioral screening test for analgesic compounds. The cellular mechanism of action of formaldehyde, inducing a typically biphasic pain-related behavior in rodents is addressed in this study. The chemoreceptor channel TRPA1 was suggested as primary transducer, but the high concentrations used in the formalin test elicit a similar response in TRPA1 wildtype and knockout animals.

View Article and Find Full Text PDF

Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target.

View Article and Find Full Text PDF

This study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Na(v)1.

View Article and Find Full Text PDF

The taxonomic characteristics of β-hemolytic streptococcal strains that reacted with Lancefield group M antisera were investigated. Group M streptococci have not been proposed as a species to date. Four strains of the group M streptococci isolated from dog were located within the pyogenic group of the genus Streptococcus on 16S rRNA gene-based phylogenetic analysis; the group M strains were located a short distance away from all other members of the group.

View Article and Find Full Text PDF

The primary afferent nociceptive neuron has recently attracted major research interest because of the cloning of very selectively expressed and well-conserved ion channel genes. All parts of the neuron, sensory terminals, axon and cell body, are accessible to validated research techniques in vitro using various isolated tissues or cells taken from laboratory animals. Single-unit recording and measuring stimulated calcitonin gene-related peptide (CGRP) release as well as patch-clamping and calcium imaging of cultured sensory neurons provide different kinds of information, and no model alone answers all questions.

View Article and Find Full Text PDF

Background: The axonal membrane of unmyelinated sensory nerve fibers is well equipped with different molecular transducer molecules that establish specific sensitivities, the capacity for sensitization by inflammation and generation of ectopic action potentials that contribute to spinal sensitization, leading to projected pain, allodynia and hyperalgesia.

Methods: We studied the sensory properties of unmyelinated axons in the midnerve by measuring stimulated neuropeptide release, recording from primary afferents and eliciting projected pain by stimulation of a surgically exposed superficial radial nerve in a conscious human subject.

Results: Capsaicin (TRPV1) receptor channels are expressed along the axonal membrane and respond to acidic, thermal and capsaicin stimulation with a graded and calcium-dependent calcitonin gene-related peptide release.

View Article and Find Full Text PDF

Sensory properties of unmyelinated axons in the isolated rat sciatic nerve have been revealed previously by measuring stimulated neuropeptide release in response to noxious stimuli. In addition, axonal sensitization by inflammatory mediators has been demonstrated and shown to depend on the heat- and proton-activated ion channel transient receptor potential vanilloid receptor-1. It was unclear whether this responsiveness is accompanied by ectopic generation of action potentials, which may play a crucial role in painful neuropathies.

View Article and Find Full Text PDF

Objective: Prostaglandin and thromboxane (TXA(2)) generation is increased in atherosclerosis. Studies with selective inhibitors attribute the enhanced prostacyclin (PGI(2)) generation to both cyclooxygenase-1 (COX-1) and COX-2 whereas the increased TXA(2) generation reflects platelet COX-1 expression. However, TXA(2) formation remains elevated in patients with cardiovascular disease on doses of aspirin that fully suppress platelet COX-1, suggesting other tissue sources for TXA(2) formation.

View Article and Find Full Text PDF

Neuropeptides like calcitonin gene-related peptide (CGRP) and substance P are found in significant proportions of primary afferent neurons. Release of these neuropeptides as well as prostaglandin E(2) is an approved index for the activation of these primary afferents. Previous studies have used cultures of enzyme-treated and mechanically dissociated primary afferent neurons, fresh tissue slices or cubes.

View Article and Find Full Text PDF

Acetylsalicylic acid (ASA) and the thienopyridine clopidogrel are established anti-platelet drugs that significantly reduce secondary cardiovascular events in patients with manifest atherosclerosis. However, their impact on atherosclerotic lesion development remains controversial. Four-week-old ApoE-deficient mice were randomly assigned to four groups receiving a cholesterol diet together with either ASA (5 mg/kg), or clopidogrel (25 mg/kg), or a combination of both ASA and clopidogrel, or vehicle for 8-12 weeks.

View Article and Find Full Text PDF