Publications by authors named "Susanne Russ"

Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted.

View Article and Find Full Text PDF

Background: Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays.

View Article and Find Full Text PDF

Deciphering signaling pathways that regulate the complex interplay between inflammation and cell death is a key challenge in understanding innate immune responses. Over recent years, receptor interacting protein (RIP) kinases have been described to regulate the interplay between inflammation and cell death. Whereas RIP1 and 3, the most well described members of the RIP kinase family, play important roles in necroptosis, RIP2's involvement in regulating inflammation, cell death processes and cancer is less well described and controversially discussed.

View Article and Find Full Text PDF

Psoriasis is a T cell-mediated chronic autoimmune/inflammatory disease. While some patients experience disease limited to the skin (skin psoriasis), others develop joint involvement (psoriatic arthritis; PsA). In the absence of disease- and/or outcome-specific biomarkers, and as arthritis can precede skin manifestations, diagnostic and therapeutic delays are common and contribute to disease burden and damage accrual.

View Article and Find Full Text PDF

Effector CD4 T lymphocytes contribute to inflammation and tissue damage in psoriasis, but the underlying molecular mechanisms remain poorly understood. The transcription factor CREMα controls effector T cell function in people with systemic autoimmune diseases. The inhibitory surface coreceptor PD-1 plays a key role in the control of effector T cell function and its therapeutic inhibition in patients with cancer can cause psoriasis.

View Article and Find Full Text PDF

Effector CD4 T cells with increased IL-17A and reduced IL-2 production contribute to tissue inflammation and organ damage in systemic lupus erythematosus (SLE). Increased expression of the transcription factor cAMP response element modulator (CREM) α promotes altered cytokine expression in SLE. The aim of this study was to investigate CREMα-mediated events favoring effector CD4 T cells in health and disease.

View Article and Find Full Text PDF

CASP1 variants result in reduced enzymatic activity of procaspase-1 and impaired IL-1β release. Despite this, affected individuals can develop systemic autoinflammatory disease. These seemingly contradictory observations have only partially been explained by increased NF-κB activation through prolonged interaction of variant procaspase-1 with RIP2.

View Article and Find Full Text PDF

Caspase-1 is a key player during the initiation of pro-inflammatory innate immune responses, activating pro-IL-1β in so-called inflammasomes. A subset of patients with recurrent febrile episodes and systemic inflammation of unknown origin harbor mutations in CASP1 encoding caspase-1. CASP1 variants result in reduced enzymatic activity of caspase-1 and impaired IL-1β secretion.

View Article and Find Full Text PDF

Subcellular localization studies and life cell imaging approaches usually benefit from fusion-reporter proteins, such as enhanced green fluorescent protein (EGFP) and mCherry to the proteins of interest. However, such manipulations have several risks, including protein misfolding, altered protein shuttling, or functional impairment when compared to the wild-type proteins. Here, we demonstrate altered subcellular distribution and function of the pro-inflammatory enzyme procaspase-1 as a result of fusion with the reporter protein mCherry.

View Article and Find Full Text PDF

The proinflammatory enzyme caspase-1 plays an important role in the innate immune system and is involved in a variety of inflammatory conditions. Rare naturally occurring human variants of the caspase-1 gene (CASP1) lead to different protein expression and structure and to decreased or absent enzymatic activity. Paradoxically, a significant number of patients with such variants suffer from febrile episodes despite decreased IL-1β production and secretion.

View Article and Find Full Text PDF