For endocrine disrupting chemicals (EDC) the existence of "safe exposure levels", that is exposure levels that do not present an appreciable risk to human health is most controversially discussed, as is the existence of health-based reference values. Concerns have been especially raised that EDCs might not possess a threshold level such that no exposure level to EDCs can be considered safe. To explore whether or not threshold levels can be identified, we performed a screening exercise on 14 pesticidal and biocidal active substances previously identified as EDCs in the European Union.
View Article and Find Full Text PDFIntroduction: One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products.
View Article and Find Full Text PDFBackground: Small molecule ligands often have multiple effects on the transcriptional program of a cell: they trigger a receptor specific response and additional, indirect responses ("side effects"). Distinguishing those responses is important for understanding side effects of drugs and for elucidating molecular mechanisms of toxic chemicals.
Results: We explored this problem by exposing cells to the environmental contaminant benzo-[a]-pyrene (B[a]P).
Overexpression of the CYP1 family, independent of gender, is focal to the evaluation of the risk of human cancer. We have analysed the ability of 17 anthropogenic environmental xenobiotics widely used in Europe within households and agriculture to induce the human cytochrome P450 1A (CYP1A) in the human hepatoma derived cell line HepG2. The xenobiotics were potent to concomitantly induce both CYP1A mRNA and CYP1A activity in a dose-response relationship.
View Article and Find Full Text PDFWe performed an interspecies comparison for the human hepatoma cell line HepG2 and the eukaryotic single cell organism Tetrahymena pyriformis (T. pyriformis) for 17 xenobiotics with diverse structures and four metals. The cytotoxicity was assessed by four different cell viability assays (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction (MTT), neutral red uptake (NRU), resazurin dye (AlamarBlue), 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM)) for the HepG2 and by cell count and MTT for T.
View Article and Find Full Text PDFCytochrome P450 1A1 (CYP1A1) belongs to the enzymes of biotransformation of phase I. CYP1A1 performs the catalytic activation of exogenous and endogenous substrates to more carcinogenic metabolites. Overexpression of the wild-type and a recently described splice variant (CYP1A1v, ovarian cancer) are attributed to neoplastic transformation.
View Article and Find Full Text PDF